9 1 DIFFERENTIAL EQUATIONS

9.1 Modeling with Differential Equations

L y' = 14 z72. To show that y is a solution of the differential equation, we will substitute the

ly=z—z~
expressions for y and y' in the left-hand side of the equation and show that the left-hand side is equal to the

right-hand side.
LHS =zy +y==z(1+27%) + (z —z ) =z+z ' +2 -z =2z =RHS
2. y=sinz cosz —cosz = y =sinz(—sinz)+ cosz(cosz) — (—sinz) = cos®z — sin? z + sin .

LHS =y + (tanz)y = cos’ z — sin®z + sinz + (tanz)(sinz cosz — cosx)

2 . 2 . 2
= cos® z — sin T +sinz +sin“z — sinx = cos”“ z = RHS,

s0 y is a solution of the differential equation. Also, y(0) = sin0 cos0 —cos0 =0-1—1 = —1, so the initial
condition is satisfied.

3 (@y=sinkt = y =kcoskt = y" = —k?sinkt. ¥V 4+9% =0 =
—k*sinkt +9sinkt = 0forallt < (9—k?)sinkt=0forallt & 9-k>=0 o k=+3

(b) y = Asinkt + Bcoskt = 3y’ = Akcoskt — Bksinkt = y" = —Ak?sin kt — Bk cos kt.
Thus,y” +9y =0 = —Ak®sinkt — Bk? cos kt + 9(Asin kt + B cos kt)y=0 =
(9 - kz)Asin kt + (9 - k2)B cos kt = 0. The last equation is true for all values of A and B if k = +3.
1 r2ert‘ yll+y/_6y20 = T2ert+rert_66rt:0 =

by=e¢" = y=ret = o=
(r+3)(r—2)=0 = r=-30r2

(T2+r—6)ert:0 =

5 @y=e€ = y =e = y’ = LHS =y'+2' +y=e"+2" +e =4e" #£0,50y = et isnot a
solution of the differential equation.

bDy=e?t = ¢ =_¢?

y=e'

= y'=e  LHS =y '+ 2 +y=et -2 ttet —(= RHS, so
is a solution.

@y=te? = ¢ = t(—e‘t) +e (1) =et(1 - t) = Yy =et(t-2).
LHS = 4" + 2y +y =€ (¢t —2) + 2¢"*(1 — t) + te "
=e ' [(t=2)+2(1 —t) +¢] = e~*(0) = 0 = RHS.
soy = te™ " is a solution.
Wy=t’e"" = y=tet(2-t) = y' =et (¢ — 4t +2).
LHS=y" + 2y +y = et (t* — 4t + 2) +2te "2 —t) + t2?
= [(® —dt+2) + 22— ) + 2] = *(2) £ 0,

2 —t. .
soy = t?e™" is not a solution.
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6. (a)y = Cemz/2 = 9y = 0612/2(21'/2) = zCe"/? = zy.

(b) C= 10 C= =1 (©y(0)=5 = Ce®"=5 = C =5,so0thesolution is
\&J o
dy)=2 = Cel’? =2 = (C = 2e %2, so the solution is
ot _
=1c=-3"" =
7. (a) Since the derivative y' = —y? is always negative (or 0 if y = 0), the function y must be decreasing (or equal

to 0) on any interval on which it is defined.

1 1 1 1\
by=—— = -~ _ LHS=¢ =-— :_( = —y?> = RHS
Y=7¥c v (z+C)° V=@ oy z+C v
(c) y = 0 is a solution of y = —y2 that is not a member of the family in part (b).
1 1 1 1 1
d) If = , th 0:——:—5 =05 === =2, = —
(d) If y(z) C en y(0) 0rC_C ince y(0) = 0.5 c= 3 = C=2,50y PO

8. (a) If z is close to 0, then zy® is close to 0, and hence, y' is close to 0. Thus, the graph of y must have a tangent line
that is nearly horizontal. If z is large, then zy? is large, and the graph of y must have a tangent line that is nearly
vertical. (In both cases, we assume reasonable values for y.)

b y=(c— m2)—1/2 = ¢y =z(c— z2)—3/2.

RHS = z° = a:[(c —3:2)—1/2]3 =z(c— m2)_3/2 =y =LHS

(©) _ c=1 When z is close to 0, 3’ is also close to 0.
R S 4 }

As z gets larger, so does |v/|.

“C )’

-1

@) y(0) = (c—0)"Y2 =1/y/candy(0) =2 = +e=

—zQ)_l/z.

=
4
o
Il

dP P dP P P
@ I ol — — <1l =
9. (a) pri 1.2P<1 4200) Now 7 >0 = 1- 2200 > 0 [assuming that P > 0] = 1200 <

P <4200 = the population is increasing for 0 < P < 4200.

(b)%<0 = P > 4200

(0)%:0 = P =42000rP =0
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1. @y=%k = y'=0,50%2y4—6y3+5y2 & 0=k'-6K}+5k & k2(k2—6k'+5)=0 &

Ek-1)(k-5=0 < k=0,10r5
(b) y is increasing < %>O & Yly-1(y-5 >0 & yc(—00,0)U(0,1)U (5 00)
dy
dt

11. (a) This function is increasing and also decreasing. But dy/dt = e'(y — 1)® > 0 for all ¢, implying that the graph
of the solution of the differential equation cannot be decreasing on any interval.

(c) y is decreasing & <0 & ye(1,5)

(b) Wheny = 1, dy/dt = 0, but the graph does not have a horizontal tangent line.
12. The graph for this exercise is shown in the figure at the right. y
A.y' =1+ xy > 1 for points in the first quadrant, but we can
see that y' < 0 for some points in the first quadrant. So

equation A is incorrect.

B. ¥’ = —2xy = 0 when z = 0, but we can see that ¥ >0

for z = 0. So equation B is incorrect.

C. y' =1 — 2zy seems reasonable since:
(1) When z = 0, 3’ could be 1.
(2) When = < 0, y' could be greater than 1.

/
(3) Solving y’ = 1 — 2zy for y gives us y = 12731 If y' takes on small negative values, then as = — oo,

y — 0T, as shown in the figure. Thus, the correct equation is C.

13. (a) P increases most rapidly at the beginning, since there are usually (c) P

many simple, easily-learned sub-skills associated with learning a M
skill. As ¢ increases, we would expect dP/dt to remain positive, but

decrease. This is because as time progresses, the only points left to

learn are the more difficult ones. P(0)

~

dP . . . .

(b) e k(M — P) is always positive, so the level of performance P is
increasing. As P gets close to M, dP/dt gets close to 0; that is, the
performance levels off, as explained in part (a).

14. (a) The coffee cools most quickly as soon as it is removed from the heat (©)
source. The rate of cooling decreases toward 0 since the coffee
approaches room temperature.

d
(b) d—i/ =k(y — R), where k is a proportionality constant, y is the

temperature of the coffee, and R is the room temperature. The initial —

condition is y(0) = 95 °C. The answer and the model support each

other because as y approaches R, dy/dt approaches 0, so the model
seems appropriate.



724 O CHAPTERY9 DIFFERENTIAL EQUATIONS

9.2 Direction Fields and Euler’s Method

1. (a) (b) It appears that the constant functions y = 0,

y = —2, and y = 2 are equilibrium solutions.
Note that these three values of y satisfy the given

differential equation y' = y(1 — 1¢°).

(i) =
NNNNNNNNN
NNNNNNNNN

(iii)
2. (a) Mo (b) From the figure, it appears that y = 7 is an
v
/ :5 N equilibrium solution. From the equation
/ -
; Z y' = xsiny, we see that y = nm (n an integer)
2 g
N < SLGEE 77 describes all the equilibrium solutions.
NN NN\
vV VAN S VAR
VNN NS 7 /7 1 1
AV VNN /7 41
A N e @//’///
AN RS
-3 0 3x

3. 4/ = y — 1. The slopes at each point are independent of z, so the slopes are the same along each line parallel to the
z-axis. Thus. IV is the direction field for this equation. Note that fory = 1, y =0.

4y =y —xz=0ontheliney =z, whenz = 0 the slope is y, and when y = 0 the slope is —z. Direction field II
satisfies these conditions. [Looking at the slope at the point (0, 2), IT looks more like it has a slope of 2 than does
direction field I.]

5y =y° — z2 =0 = 1y = £z There are horizontal tangents on these lines only in graph IIL, so this equation

corresponds to direction field III.

6. 4 = y® — 2® = 0 on the line y = x, when z = 0 the slope is y®, and when y = O the slope is —z°. The graph is
similar to the graph for Exercise 4, but the segments must get steeper very rapidly as they move away from the
origin, because z and y are raised to the third power. This is the case in direction field I.

7. (@ y(0) =1 (b) y(0) =0 (©) y(0) = —1
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8. (a)y(0)=1 (b) y(0) =0 © y(0)=-1
? ///lIz'—l////// /////I;-rllll///—
s/l eyl )= -7 4 - -
21//////\\ ~<///11{11/77-~\ N~c//7111411177-~\
/7 7=~\\ N2 2SS NIV VYE VY VITINNN
/7 -=~N\\\ \ S=c s Af 7 2o =N\ \A\NN=—c /7 Ax/7 7=~ \ 1\
~==>N\\\\ \ -==~N\\\\ VANNSN = b =N\
VAN S o - =S \ —=~N\ R
NN SNTY) B NI —2a v~ D 2\ ~- 0
(RR S R N N VAN =~ VAN -~
AANNSN— A/ =N\ VANS = - ] VAN =
\\NN=s77/707777=~\\ \\~N=-~r7/77 \\~=-r7/
N~c/7/7711§711177-~\ N~-/7/711 N~~/7771f1
A= NN AN S e —crrrrketiiirs -
9.
Note that for y = —1, ¢’ = 0. The three solution curves
l__
r Y y=1+y sketched go through (0, 0), (0, —1), and (0, —2).
0 0 1 ,
[N AN A
0 1 2 NENENE NN
AR N NN
0 2 3 NN NNy NN
AV AVAVER 3 VNV AV
0 =3 —2 /1177 /77777
0 | -2 -1 B L0 G
NNSNNSNSN PNSNSNSNSN N
AR S SN NNN
VAN NAVANRNAN
VAV A3E NV L
10. - Note thaty’ = 0 for y = +z. If || < |y, then y' < 0; that
2
x =z — . . . .
Yy Y Y is, the slopes are negative for all points in quadrants I and II
1 +£3 -8 above both of the linesy = z and y = —z, and all points in
+3 +1 8 quadrants Il and IV below both of the lines y = —z and
+1 +0.5 0.75 y = . A similar statement holds for positive slopes.
+0.5 +1 —0.75 y
=\ 1 L1 T 0 T T T T W
/ =\ | [N EAY /
I/ =N N\ 0y o /
I /7 =\\ NN\ = I
ol 7 2N\ N\ — ]
[ s - 7 !
I -2/ 113
! NS —- 77 1
/ - N\\N=7171
A TN N\N=-7/
Vo \ VN~
A 11434-| [

125
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1.
z Y Y =y—2z
-2 -2
-2 2 6
2 2 -2
2 -2 -6
12
z Y Yy =1-zy
+1 +1 0
+2 +2 -3
+2 2 5
13. :
z y Yy =y+uay
0 +2 +2
+2 +4
-3 +2 4

Note that 4’ = 0 for any point on the line y = 2z. The slopes are
positive to the left of the line and negative to the right of the line.

The solution curve in the graph passes through (1, 0).

b
3

N~
P V4
P
e -

Note that ¢’ = 0 for any point on the hyperbola zy = 1
(or y = 1/z). The slopes are negative at points “inside” the
branches and positive at points everywhere else. The solution

curve in the graph passes through (0, 0).

llll/%%\\\\\\
P ~N N
L7 F=N NN
P17 =~N N\
111777 F s =SSN\ \
1171777 o~

=== /7771 B%
NANNS=~FK/ /0T
VANNNS— Y/
VANNN =K LT
VANANNSY
Vv NS

Note that y' = y(x + 1) = 0 for any point on y = 0 or on
z = —1. The slopes are positive when the factors y and z + 1
have the same sign and negative when they have opposite signs.

The solution curve in the graph passes through (0, 1).

\ N
\ P
\ NN
\ N NN
A\ A
NN~=ZL% s/
4t ———t>
B, ———=F+NNNNN\ X
77/ =~%N NN\
VAV AN A U U
J 7/ =NF A0
P/ =N1 v
III/—-A«3-r'\\\\l|
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14. Note that y’ = (1 — y) = 0 for any pointonz = O orony = 1.
z Yy y =z —ay The slopes are positive when the factors x and 1 — y have the
+2 0 +2 same sign and negative when they have opposite signs. The
+2 3 F4 solution curve in the graph passes through (1, 0).
+2 -1 +4

AN\N\N\~N~+—-~/"/7/
B \\:--;// /13X
VAYANNNNT /7770000
VUVNNNT /S
VY VYN NNT
VUV NNY
PU VNSN3t
15. In Maple, we can use either directionfield (in Maple’s share 3
. , L INVIN\[Z 112
library) or plots [fieldplot] to plot the direction field. To plot N \ § NV ; e
the solution, we can either use the initial-value option in fQ\ { § 5 f |-
rectiont: - - ANNTE
directionfield, or actually solve the equation. In Mathematica, AN
. . . ~ ~
we use PlotVectorField for the direction field, and the /~\\NP/ /—
| N NN A
Plot [Evaluate[...]] construction to plot the solution, which -3 0.5 3

isy = e17°°22)/2 1 Derive, use Direction_ Field (in utility file ODE_APPR) to plot the direction field.

Then use DSOLVE1 (-y*SIN(2*x),1,x,y,0,1) (in utility file ODE1) to solve the equation. Simplify each
result.

16. See Exercise 15 for specific CAS directions. The exact solution is

9 N
24y — = N

1
Yy = —x — 2arctan +;an(1/2) N
\
\

T T tan(1/2)

\ 1 /i,

17. Y4 =3 L = lim y(t) exists for -2 < ¢ < 2; L = 42 forc = +2 and
llllllll'}lillllll t—oo
| T I I [} [ I 1
R T S L:0for~2<c<2.Forothervaluesofc,Ldoesnotexnst.
A A A A A A A A A
<t ____°°
NN N N N NN NN N NN NN
AV VA N VR VR NN \\\\\\\\Czl
NNNNNNNN &L\\\‘\/
}///—.'1///0////,/}//;\27
AV AV AV VAV ////////C:_l
///////(/////////
ﬁ.zz. ______
A W T U W W O U Y A2 W W L O SRR Y
\l\\|\\||l\|\||\
|||I|Illll|l||||
|l||II|ITIIIIIlII
\_

o
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18.

y Note that when f(y) = 0 on the graph in the text. we have y' = f(y) = 0;

VIIIIII-‘—I L R I B B |

LI R B B | L

Piiiiiryriirry so we get horizontal segments at y = +1, £2. We get segments with
NN N NN NN NNNNNNN

NN N N N NN NN N NN NN . ..
::::::;‘.:::::::: negative slopes only for 1 < |y| < 2. All other segments have positive
P Y 7~ s

AR AR A A A e AR AR AR A e

VA A A A VR A A A A e e . .

R - + slope. For the limiting behavior of solutions:
VMY I

NSNS SN e Ify(0) > 2. then lim y =ocoand lim y=2.
JIJIIJIJIJFIINNTI t—oo t——o0

VAN A A A VA A A A . .

AR EE N e If1 <y(0) <2 then lim y=1and lim y=2

[ R R R B S B B N B A t—o00 t——oo

e If —1 < y(0) < 1, then tlim y = 1and , lim y=-1.
—00 ——00
o If —2 < y(0) < —1, then tlim y = —2and \ lim y= -1
— 00 ——00

o Ify < —2,then lim y = —2and lim y = —oo.
t—oo t——o00

19. (a)y = F(z,y) =yandy(0) =1 = z0=0,y0=1

(i) h=04andy1 = yo + hF(zo,50) = n=1+04-1=14 2 =z0+h=0+04=04,
soyr =y (0.4) =14
(i)h=0.2 = z1=02andx2 =04, s0we need to find y2.
yi = yo + hF(z0,y0) = 1+ 0.2y0 = 1+0.2- 1 = 1.2,
yo =1 + hF(z1,51) =124+ 02y; =1.240.2- 1.2 =1.44.
(i) h=0.1 = x4 =0.4,s0weneedto findys. y1 = Yo + hF(zo,90)=1+01yo=1+0.1-1=1.1,
yo = y1 + hF(z1,51) = 1.1+ 0.1y = 1.14+0.1- 1.1 = 1.21,
ys = y2 + hF(22,y2) = 1.21 + 0.1yp = 121 +0.1-1.21 = 1.331,
ya = ys + hF(z3,ys) = 1.331 + 0.1ys = 1.331 + 0.1 1.331 = 1.4641.

(b) y y=e' We see that the estimates are underestimates since
57 ’éh =0l they are all below the graph of y = €.
~—h=02
141
h=04
1.3¢4
124
11+
1.0
o[ o1 02 03 04 *

(¢) (i) Forh =0.4: (exactvalue) — (approximate value) = e¥% —1.4~0.0918
(i) For h = 0.2: (exact value) — (approximate value) = e — 1.44 =~ 0.0518
(iii) For h = 0.1: (exact value) — (approximate value) = e — 1.4641 =~ 0.0277

Each time the step size is halved, the error estimate also appears to be halved (approximately).
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20. Y

As z increases, the slopes decrease and all of the
estimates are above the true values. Thus, all of

h=05 the estimates are overestimates.

ARERRRLRRRRLRR LRRERY
2 ARLRRRRRRRRRRR RN R

=

NRULL LA
ARUUNL YA
(RRRERELNCEERERREEEY

ST
ARLLLL LAY
HERTRITER IR T T Y

°]

21. h=0.5,20 =1,y = 0,and F(z,y) = y — 2z.
Note thatz; =zo +h=1+0.5=1.522 = 2, and 23 = 2.5.
Y1 =yo + hF(2o,y0) = 0+ 0.5F(1,0) = 0.5[0 — 2(1)] = —1.
Y2 =y + hF(z1,51) = =14+ 0.5F(1.5, 1) = =1+ 0.5[-1 — 2(1.5)] = —3.
Ys = Y2 + hF(z2,y2) = =3+ 0.5F (2, -3) = -3+ 0.5[-3 — 2(2)] = —6.5.
Ys = y3 + hF(z3,y3) = —6.5 + 0.5F (2.5, ~6.5) = —6.5 + 0.5[—6.5 — 2(2.5)] = —12.25.

22. h=02,20 =0,y0 = 0,and F(z,y) = 1 — ay.
Notethatz; =20+ h=0+0.2=0.2, 20 = 0.4, z3 =0.6,and z4 = 0.8.

Y1 = Yo + hF(z0,y0) = 04 0.2F(0,0) = 0.2[1 — (0)(0)] = 0.2.

Y2 =y1+ hF(z1,91) = 0.2+ 0.2F(0.2,0.2) = 0.2+ 0.2[1 — (0.2)(0.2)] = 0.392.

Y3 =y2 + hF (2, y2) = 0.392 4 0.2F(0.4,0.392) = 0.392 + 0.2[1 — (0.4)(0.392)] = 0.56064.
Ya =ys + hF(z3,ys) = 0.56064 + 0.2[1 — (0.6)(0.56064)] = 0.6933632.

Ys = Y4 + hF(24,ya) = 0.6933632 + 0.2[1 — (0.8)(0.6933632)] = 0.782425088.
Thus, y(1) =~ 0.7824.

23. h=0.1, z¢ =0,y0 =1, and F(z,y) =y+zy.
Note thatz; =20 +h=0+0.1=0.1, 22 = 0.2, 23 = 0.3, and z4 = 0.4.
Y1 = Yo+ hF(20,90) = 1+ 0.1F(0,1) = 1+ 0.1[1 + (0)(1)] = 1.1.
V2 =41+ hF(z1,41) = 114 0.1F(0.1,1.1) = 1.1+ 0.1[1.1 + (0.1)(1.1)] = 1.221.
Ys = y2 + hF(22,y2) = 1.221 4+ 0.1F(0.2, 1.221) = 1.221 4 0.1[1.221 + (0.2)(1.221)] = 1.36752.
Ya =ys + hF(z3,y3) = 1.36752 + 0.1F(0.3,1.36752) = 1.36752 + 0.1[1.36752 + (0.3)(1.36752)]
= 1.5452976.
Ys = ya + hF(z4,y4) = 1.5452976 + 0.1F(0.4, 1.5452976)

= 15452976 + 0.1[1.5452976 + (0.4)(1.5452976)] — 1.761639264.
Thus, y(0.5) ~ 1.7616.

24 (a) h=10.2,20 =1, 9o = 0, and F(z,y) =z — zy.
We need to find y2, because z; = 1.2 and T2 =14,
Y1 =yo + hF(z0,30) = 0+ 0.2F (1, 0) = 0.2[1 - (1)(0)] = 0.2.
Y2 =y1+hF(z1,31) =02 + 0.2F(1.2,0.2) =0.240.2[1.2 — (1.2)(0.2)] = 0.392 =~ y(1.4).

129
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(b) Now h = 0.1, so we need to find ya.
y1 =0+ 0.1[1 — (1)(0)] = 0.1,
y2 = 0.1+ 0.1[1.1 — (1.1)(0.1)] = 0.199,
ys = 0.199 + 0.1[1.2 — (1.2)(0.199)] = 0.29512, and
ya = 0.29512 + 0.1[1.3 — (1.3)(0.29512)] = 0.3867544 ~ y(1.4).

25. (a) dy/dz + 32’y = 62> = y = 6% — 3z2y. Store this expression in Y1 and use the following simple
program to evaluate y(1) for each part, using H = h = 1 and N = 1 for part (i), H = 0.1 and N = 10 for
part (i), and so forth.

h—-H0-X3-Y:
For(, ,LN: Y+HXxY; - Y:X+H-X:
End(loop):

Display Y. [To see all iterations, include this statement in the loop.]
()H=1N=1 = y(1)=3 (HH=01N=10 = y(1)~2.3928

(iii)) H=0.01,N =100 = y(1) = 2.3701 (iv) H=0.001,N = 1000 = y(1) =~ 2.3681
byy=2+ e = y = _3g2e~"

LHS = ¢/ + 32°y = —322¢®" + 327 (2 + 6_33) = —32% " +62° + 3%~ = 62° = RHS

y(0)=2+e%=2+1=3
(c) The exact value of y(1) is 2 + e =246l
(i) For h = 1: (exact value) — (approximate value) = 2 + e ! -3~ —0.6321
(ii) For h = 0.1: (exact value) — (approximate value) = 2 + e ! —2.3928 ~ —0.0249
(iii) For h = 0.01: (exact value) — (approximate value) = 2 + e~ ! —2.3701 ~ —0.0022
(iv) For h = 0.001: (exact value) — (approximate value) = 2 +e~! — 2.3681 ~ —0.0002

In (ii)(iv). it seems that when the step size is divided by 10. the error estimate is also divided by 10

(approximately).

26. (a) We use the program from the solution to b)
Exercise 25 with Y1 = z® — y®, H = 0.01, and
N = 220 = 200. With (2o, y0) = (0, 1), we get
y(2) ~ 1.9000.

§ +

-1

Notice from the graph that y(2) ~ 1.9, which
serves as a check on our calculation in part ().
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21. (a) R%?— + %,Q = E(t) becomes (b) From the graph, it appears that the limiting value
of the charge @ is about 3.
5Q + 535 Q@ = 60 or @' +4Q = 12. & .
©IfQ =0,thend4Q =12 = @Q =3isan
10) equilibrium solution.
64+ 1 1 L
[ IR A N N A T (d) Q
o N Y W T U U W 64 1 v L 1t
L W W W W W W L T N R O N I |
LS 2 W VA U N W WO W R L L U T WO W O
NN N N N N NN A U W W W U
T - - = — — L L N N S O U VY
A A A A AV a4 NN N N N N NN
2¢ 1 4 4 0 4 —
Lo /7 / /
kS A R R B B 2+ /1 1/ / /
[ ! Il / /
> i !/ [ ! 1
0 2 41 ! (] [ ]
o T

©Q +4Q=12 = Q' =12-4Q. NowQ(0) = 0,50ty = 0and Qo = 0.
Q1=Qo + hF(to,Qo) =0+ 0.1(12 —4-0) = 1.2
Q2=Q1+hF(t;,Q1) =1.2+0.1(12—4-1.2) = 1.92
Q3 =Q2+hF(t2,Q2) = 1.92 + 0.1(12 — 4 - 1.92) = 2.352
Q4=Qs +hF(t3,Q3) = 2.352+ 0.1(12 — 4 - 2.352) = 2.6112
Qs = Qa + hF(ta, Qa) = 2.6112 + 0.1(12 — 4 - 2.6112) = 2.76672
Thus, @5 = Q(0.5) =~ 2.77 C.
28. (a) From Exercise 9.1.14, we have dy/dt = k(y — R). We are given that R = 20°C and dy/dt = —1°C/min
when y = 70°C. Thus, -1 = k(70 — 20) = k= — 5 and the differential equation becomes
dy/dt = — 2 (y — 20).
(b)
The limiting value of the temperature is 20°C;

100
957 .
that is, the temperature of the room.

80¢

60 4

E

403

20F

bt b e e 4

ol 40 80 120 160 200

(c) From part (a), dy/dt = —%(y —20). With to = 0, yo = 95, and h = 2 min, we get
Y1 =yo + hF(to,y0) = 95+ 2[— (95 - 20)] = 92

Y2 =y1+hE(t, y1) = 92 4 2[—25(92 — 20)] = 89.12
Ys = vz + hF(t2,y2) = 89.12 + 2[- 2(89.12 - 20)] = 86.3552
Ys = ys + hF(ts,ys) = 86.3552 + 2[ - £(86.3552 — 20)] = 83.700992

Ys = ya + hF (ta,ya) = 83.700992 + 2[— L (83.700992 — 20)] = 81.15295232
Thus, y(10) ~ 81.15°C.
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9.3 Separable Equations

dy _y

dy dz dy dz
1.9 _ 4 & _ == — -
=2 = ” - [y #0] = / ” / - = Inly|=Injz|+C =

In|z|+C _ I . ot

ly| = R+ = elnleleC = e |z| = y= Kz, where K = +eC is a constant. (In our derivation, K was
nonzero, but we can restore the excluded case y = 0 by allowing K to be zero.)

@ B eZm

s 3 _ 2z 3 _ 2z 4 _ 2z
Z.dz e = 4fdy=e*dzr = [4fdy=[e¥dx = vy =3¢ +C =

y==xy/3¢*+C

dy Ty dy zdx /dy rdzx
3, 2 1 ! = = —_— = — = — = — = — =
(2" + 1)y ==y dz 22 +1 y wr1 V7O y /x2+1

Injy| = 3In(z® + 1)+ C [u=z2+1,du=2zdz] :ln(alc2+1)1/2—|—lnec:ln(ec 2+1) =

ly| = Va2 +1 = y=K+Vaz?+1 where K = +¢C is a constant. (In our derivation, K was nonzero, but

we can restore the excluded case y = 0 by allowing K to be zero.)

d .
4 y =4y’sinz = %:yzsinz = %:sm:ﬂdm [y #0] = /Z—l%:/smwdz =

=-cosz+C = l:cosm—C’ = y= where K = —C. y = 0 is also a solution.
Y

cosz + K’

siny
cosy

d
5 (1+tany)y =2>+1 = (1+tany)d—Z:m2+1 = <1+ )dy:(w2+1)da: =

/ (1 - ﬂ) dy = /(ac2 +1)de = y—Injcosy|= 12® + 2 + C. Note: The left side is equivalent to

cosy

y + In|secy|.
6 1V L mydu= (1R dr = [+t du= [ Pdr =
dr  1++u

ut 2 =r+2r°2 40

t
1 dy __te o yJ1+y2dy =tetdt = [y/1+y°dy= [tetdt =
dt Y /1 + y2
11+ y2)3/ 2 _ 4ot — ¢t + C [where the first integral is evaluated by substitution and the second by parts] =

14+9% = [3(te' - +ON* = y=FV/Bltet —e' +OP° -1

2

T

8.y = zy = zln—zidy:a:dalc = /21nydy:/:vd:1: = (lny)2:—2——|—C =
2Iny Yy Yy

Iny = +/272+C = y:e:l:\/z2/2+c
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d

9.%:2+2u+t+tu = 2= (1+u)E+y) z/(2+t)dt w7 -1 =
Iml+ul =32 4204+4C = |1+u|=e72+2+C0 _ [et¥242 yhore ¢ — € =
14+u=+Ket/2+2 = u:—1iKet2/2+2twhereK>0.u:—lisalsoasolution,so
u=-—1+ Aet’2+ % where A is an arbitrary constant.
dZ t+ =z dZ t_z —z t -z t -z __ t

10,E+e =0 = w - = JePdz=—[edt = —eF=-e4+C = eF=¢-C
= l—e—C’ = € S = z=In 1 = z——ln(et—C)

e* Tet-C B et - C B

11,@:y2+1,y(1):0 dy /dz = tan~ y:m+C.y:0whenx:1,so
dz 2~i~1
1+C=tan"'0=0 = C:~1.Thus,tan_ly:x—landy:tan(z—1).
dy ycosz 14+4°

12—-: ) =1. 2 = ! =
e y(0) (14+9°)dy = ycoszdz = dy = coszdr =
f(% )dy:fcosmda: = Infy|+ 1y’ =sinz +C. y(0)=1 = Inl1+3 =sin0+C =
C=4%.solnly + 1y? =sinz + 1. We cannot solve explicitly for y.

B.zcosz =2y +e¥)y = zcoszdr = (2y+e¥)dy = J@y+e¥)dy = [zcoszdz =
v’ + %63” =zsinz +cosz + C [where the second integral is evaluated using integration by parts]. Now
y0)=0 = 0+i=0+14+C = C:—%.Thus,asolutionisy2+%esy:zsinx—l-cosm—%.
We cannot solve explicitly for y.
apr 1/2 1/2

Wy =vPt = dP/NP=\kdt = [P'2dp=[{/2q = opV2_ 232 4 .
Pl)=2 = 2v2=24C = C=2\/§—§,502P1/2=§t3/2+2\/§—§ =

2
VP=1t2 4oL o P:(%t3/2+\/§—§).
du 2t 4+ sec?t

B 2= ey w0) = =5 [2udu= [(2t +sec?t)dt = u? = > + tant + C, where
[O0)* =0 +tan0+C = C= (=5)% = 25. Therefore. u2 = 2 + tant + 25,s0u = £v/t2 + tant + 25.
Since u(0) = —5. we must have u = —v/#Z + tant & 25.

16 dy_ v —y - 1,2 :

o te Y1) =0. feVdy = [tdt = —e V=2t +C. Since y(1) = 0, —e® = 1 . 12 1 C. Therefore,
2
C=-1-1=_3,nd_ev_1;2_3 —y_3_1,2_3-¢t __2
5 5 an e 5t 5-Soe 5 3t° = 3 = ey—3~t2 =

=In2— ln(3 — t2) for]t[ < \/3_,



738 O CHAPTER9 DIFFERENTIAL EQUATIONS

17.y'tanz =a+y, 0<z <7m/2 = dy _aty = dy
drz tanz at+y

dy cosT .
/a+y*/sinmdm = Inla+y| =In|sinz|+C =

=cotzdx [a+y#0] =

el . _ ) _—
la + y| = enlsinel+C = vl inel . ¢€ = % |sinz] = a+y= Ksinz, where K = +¢€. (In our derivation,
K was nonzero, but we can restore the excluded case y = —a by allowing K to be zero.) y(7/3) =a =

. 3 4
a+a:Ksm(E> = 2a:K—\/—— = K:—a.Thus,a+y:4—asinwandsoy:4—asin:cfa.
3 2 V3 V3

V3

<

d
8oy +y=12 = zo=y—y = azdy=@"-y)de = dy _de

dz y2~y:m

_dy _ [ R S D i U Inlyl =
/y(y—l)_/m l[y#0,1] = /(y—l y>dy_/ac = Inly—1]-Injy=njz[+C

-1 —1 _
yy \:ln(eCIxD = .y—é—‘:eclaﬂ = y—y—l—:Kw,whereK:iec =

= In

1-— % =Kz = 1 =1-Kz = y= T - [The excluded cases, y = 0 and y = 1, are ruled out by
y —
1
the initial condition y(1) = —1.]Now y(1) = -1 = —1= -k = 1-K=-1 = K=2
S0y = !
VST

19.%:43733}.3;(0):74(1—5-:4123&1: [ify #0] = /%:/4:23@: = Inly|=2z*+C =
z

elnlytzemh“c = |y|:ez4ec = y=Ae“4:y(0)=7 = A=7 = y=7ez4~

dy o* dy dz 1 LI 1
= = == = — = — —_—— = —— . N=1 = —1:——+C =
20 =7 y(1) =1 72 = 7 Ty 5.2 T y(1) ) 3
1 1 2+2° 222
= _1 - = — _ = —_— = = .
C=-3.800 =52 %3~ 2222 YTt

d dy dy  _
N )y =2x+/1 -9y = a—yj—c=2x\/l—y2 = ﬁzlcdw = /——m—/Zazdw =

sin"ly=a>+Cfor—% <2’ +C< 3.

) y(0)=0 = sin'0=0"+C = C=0.sosin” 'y =1’

and y = sin(z?) for —\/m/2 <z < \/m/2.

s ;

(c) For /1 — y? to be areal number, we must have —1 < y < 1; that is, —1 < y(0) < 1. Thus, the initial-value
problem ¢’ = 2z /1 — 32, y(0) = 2 does not have a solution.



2.

24,

3. —==—=,y(0)=%. So [sinydy = [sinzdr <« 5
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ey +cosz=0 & [eVdy=—[coszdz & —eV=—sinz+C; & y= —In(sinz + C).
The solution is periodic, with period 27. Note that for C > 1, the domain of the solution is R, but for —1 < C <1
it is only defined on the intervals where sinz + C > 0. and it is meaningless for C < —1, since then

sinz + C < 0, and the logarithm is undefined.

3 2 2

2 -1 -1

C=-05 C=05 Cc=

11

N AL
VAV,

For —1 < C < 1, the solution curve consists of concave-up pieces separated by intervals on which the solution is

0 0
0.8 11
2

-1.5 -

=1
-1
C=3 C=6

not defined (where sinz + C < 0). For C = 1, the solution curve consists of concave-up pieces separated by
vertical asymptotes at the points where sinz +C =0 < sing = —1. For C > 1, the curve is continuous, and

as C increases, the graph moves downward, and the amplitude of the oscillations decreases.

—cosy=—cosz+C & cosy=cosz — C.From the initial
condition, we need sy =cos0—C = 0=1-C = (C= 1,
so the solution is cos y = cosz — 1. Note that we cannot take cos ! of

both sides, since that would unnecessarily restrict the solution to the case

where -1 <cosz —1 « 0 < cosz, as cos ™! is defined only on )
— —
[—1, 1]. Instead we plot the graph using Maple’s 25 0

2.5

plots[implicitplot] or Mathematica’s
Plot [Evaluate[---]].

d zVx? +1
ﬁ = e & [ye?dy = [2+/Z2 + 1dz. We use parts on the LHS with u = y, dv = e¥ dy, and on

the RHS we use the substitution z = 22 + 1, s0 dz — 2z dz. The equation becomes ye¥ — [ e¥ dy = 1 [Vzdz

< e(y-1)=1(2* + 1)3/2 + C. so we see that the curves are symmetric about the y-axis. Every point (z, y)

in the plane lies on one of the curves. namely the one for which C = (y—1)ev — %(1‘2 + 1) 32 For example,
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along the y-axis, C = (y — 1)e¥ — % so the origin lies on the curve with C = —%. We use Maple’s

plots [implicitplot] command or Plot [Evaluate [---]] in Mathematica to plot the solution curves for
various values of C'.

2.5

N A

25 1

5 J

3 -8
c=-1 Cc=-04
2 35
-3 5 3 -6 o 6
c=-1/3 C=5

It seems that the transitional values of C are —% and —3. For C' < —4 the graph consists of left and right
branches. AtC = —%, the two branches become connected at the origin, and as C increases, the graph splits into

top and bottom branches. At C' = —%, the bottom half disappears. As C increases further, the graph moves upward,

but doesn’t change shape much.

25. (a) y
| v |y=1y||=| v V=1 R R
o| 05 2 0| -2 05 i —=
0|05 | 2 |lo| 4 | o o
o] 1 1 ol 3 0.3 \\\\&\\\\\x
0| -1 1 o| 025 4 TR
ol 2 0.5 o] 03 3 R B
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®y =1y = dy/dz=1/y = () y
ydy=dr = fydy:fdm = c=1
%y2:x+c = ¥ =2x+c /%
ory =+,/2(z+c).

N

26. (a)

~

\
\
X

-1 1 1 /‘__ /
-1 -1 -1 F

1 | -1 -1 _ x
1 2 0.5 N\ \
2 1 4 N~ TN\
2 2 2 -
1 0.5 2

05 1 0.25

2 0.5 8

2]. The curves y = kz? form a family of parabolas with axis the y-axis.
Differentiating gives y' = 2kz. but k = y /22 so y' = 2y/x. Thus, the
slope of the tangent line at any point (,y) on one of the parabolas is
Yy’ = 2y/z, so the orthogonal trajectories must satisfy ' = —z /(2y)
© 2ydy=-zdr & y?= —m2/2+01 & 224+ 2% =C.
This is a family of ellipses.

28. The curves 2% — y2 = k form a family of hyperbolas. Differentiating gives
2z — 2y (dy/dz) = 0ory' = x/y. the slope of the tangent line at (z, 3)
on one of the hyperbolas. Thus, the orthogonal trajectories must satisfy
Y =—y/r o dyly= —dz/z & Inlyl=-hiz|+C &
Injz|+Inly|=C1 & In lzy| =C1 <

lzyl = et o zy = C. This is a family of hyperbolas.

37

by =2’/y = ydy=2’da

1,2 _ 1.3
S0 53Y° = 3" +c1,0r

+c)1/2.

y==£(52°
(©

N

‘\\w" \N
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29. Differentiating y = (z + k) " gives y' = ——1—-—2-. but k = 1 z, SO 6
(z+k) .
1
y = _W = —y2‘ Thus, the orthogonal trajectories must satisfy
; 1 1 9 y3 —6 6
Y ——_—y2:E &S yidy=dzr & ?:x—f—Cor
y = [3(z+ 0))3
vy
-6
30. Differentiating y = ke ™= gives y' = —ke *, butk = ye®,soy’ = —y. 4
'd N\
Thus, the orthogonal trajectories must satisfy 3’ = —1/(-y) = 1/y &
ydy=dez & iyf=z+C & y:i[2(C+z)]1/2.Thisisa
family of parabolas with axis the z-axis. —4 4

—
.

—4

. dQ dQ
31. From Exercise 9.2.27, i 12-4Q & /m = /dt & —ihnf12-4Q|=t+C &

In[12 —4Q| = -4t —4C & [12-4Q| = e 410 o 12 4Q = Ke * [K = +e7*°] &
1Q=12-Ke* & Q=3-Ae* [A=K/4. Q0)=0 & 0=3-4 & A=3 &
Q(t) = 3 — 3e™*. Ast — 0o, Q(t) — 3 — 0 = 3 (the limiting value).

dy dy
E=_%(y—2o) & /y_zoz/(—%)dt & lnjy—20|=-5t+C &

y—20=Ke % & y(t)=Ke /420 y(0)=9 & 95= K+20 & K=7 &
y(t) = 75e /%0 + 20.

32. From Exercise 9.2.28,

ar ap [ _ _fl — o—ktHC
B =kM-P) & /P_M_/( kydt < WP-M|=-kt+C & [P—M|=e

o P-M=Ae " [A=+eC] & P=M+ Ae~*t. If we assume that performance is at level 0 when
t=0.then P(0)=0 & 0=M+A & A=-M & P() =M — Me™*.
Jim P(f) =M~ M-0=M.

dz B . . . 1 _1/(b—a)71/(b*a)
34. (a) = = k(a — ) (b— ). a # b. Using partial fractions, G- o0-2) a-=z bz 0 °

dx 1
/(a—w)(b—m) /'““ = gog(~ila—sl+inp-al) =k+C =

In b = (b — a) (kt 4+ C). The concentrations [A] = a — z and [B] = b — x cannot be negative, so
b_mZOand bz :b_m.Wenowhaveln<bkm>:(b—a)(kt+C).Since:c(0):0.weget
a—z a—z a—x a—z
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- b b—z b 4,
1n(9>=(b—a)C.Hence,1n(b x):(b—a)ktﬂn(E) = = —elbmakt
a

— a—x a

b [e(b—a)kt . 1] ab [ (b—a)

= be—alktjg — 1 pelb—alkt _

1}
z moles /L.
a

(b) If b = a, then dz _ k(a — )2, so / /kdt and =kt + C. Since z(0) = 0, we get
(a—1z)

dt
1 1 th moles
C=gMusa-2=perads=a- kt+1 Takt+1 L
S = [C] = a/2 when t = 20. Then z(20) = a/2 = a_ Wk 400k = 20a%k + a
uppose £ = [C] = a/2 when ¢t = 20. Then z =a 3 = 200k + 1 =
1 a’t/(20a) at/20 at  moles
2k — = — = =
T k= = k= 0T = T o0 — 1+/20 t+20 L

35. (a) If @ = b, then %%D = k(a — z)(b — )"/ becomes dEStE =k(a-2)*? = (a—2z)dz=kdt =
2

fla—2)3%dz = [kdt = 2@-2)"Y2=kt+C [by substitution] = WyCc-Va—e =
2 \? 4 - : ,
WeC) ¢ T = z(t) =a— m The initial concentration of HBr is 0, so z(0) =0 =
4 4 4
Oza—a > m-e = CQ:E = C =2/\/a (C is positive since
4
kt+C=2(a-2z)""?>0). Thus, 2(t) =@ — ———=
) © (kt+2/y/a)?

dz dz dz
b) 2= = k(a — 2)(b— 2)!/2 @  _ /ﬁ _/
(b) pr (a—z)(b—2x) = Vi kdt = oV kdt (x). From the

hinttu=vb—2z = uwW=b—1¢ = 2udu=—d:c,so/ / —2udu
(a—:c\/b—-x [a— (b—u2)]u
du du 17 1
—2/“ = —2/ -_ 1 _2( tan ) b
a— b+ u? (m)2+u2 m \/O,T ecomes
-2 1vVb—2 9 Vb
tan~! =kt+C.Nowz(0)=0 = (C= tan—!
va—b Va—=b (0) % —b an Va—b
-2 Vb= 2 NG
and we have ! = kt tan“l =
va Va=b v a—-b
< ’/ — —tan” — > =kt =
_ t . —
t(z) = k\/—<an P tan™ ’/a— )
dr s _ d’T d’T  2dT
36. If S = s then — e The differential equation o + T = 0 can be written as % + 1%5' = 0. Thus,
ds -28 ds

1
P ?:—;dr = /gdS:/—-;dr = In|S| = —2In|r| + C. Assuming

S:dT/dr>0andr>0,wehave.5‘:e‘21”+c:e'“"zeczr_zk [k=e] = S:izk =
r
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dT' 1 1 1 k
T(1)=15 = 15=—k+AMandT(2)=25 = 25=—-1k+A(Q).
Now solve for k and A: —=2(2)+ (1) = —35=—A,s0A=235andk = 20,and T'(r) = —20/r + 35.

dc dC’
3. (a)E:r—kC = — =—(kC—r1) /—dt = (1/k) In|kC —r| = -t + M

= InkC—r|=—-kt+M, = |kC—r|= e_kt+M2 = kC—r=Mze™ =
kC = Mse ™ * +r = C(t) = Mae ™ * +7/k. C(0)=Co = Co=Ms+r/k =
=Co—r/k = C(t)=(Co~— r/k)e * +r/k.
(b) If Co < r/k. then Co — r/k < 0 and the formula for C(t) shows that C(t) increases and tl_l_)rgo C(t) =r/k.

As t increases, the formula for C(t) shows how the role of Co steadily diminishes as that of r/k increases.

38. (a) Use 1 billion dollars as the z-unit and 1 day as the ¢-unit. Initially, there is $10 billion of old currency in
circulation, so all of the $50 million returned to the banks is old. At time ¢, the amount of new currency is
x(t) billion dollars, so 10 — z(t) billion dollars of currency is old. The fraction of circulating money that
is old is [10 — z(t)] /10, and the amount of old currency being returned to the banks each day is

10—_10?@0.05 billion dollars. This amount of new currency per day is introduced into circulation. so
de 10—z 0.05 = 0.005(10 — z) billion dollars per day.
dt 10
T —dz
=0.005dt = 0 = —0.006dt = In(10-—2z)= —0.005t+c =
-z -z

10 — = Ce~0%5 where C = e = x(t) = 10 — Ce~*%*. From z(0) = 0. we get C = 10, so
x(t) = 10(1 — e—0.00St).

(c) The new bills make up 90% of the circulating currency when z(t) = 0.9 - 10 = 9 billion dollars.
9=10(1—e0%%) = 09=1-¢"% = =01 = -0005t= -In10 =
t = 2001n 10 ~ 460.517 days ~ 1.26 years.

39, (a) Let y(t) be the amount of salt (in kg) after ¢ minutes. Then y(0) = 15. The amount of liquid in the tank is
1000 L at all times, so the concentration at time ¢ (in minutes) is y( )/1000 kg/L and

dy _ y(t) L\ _ yl) ke /‘_@ dt = Iny=—— +C.and
it [1000 LI\0%in) = 100 min /Ty 100 Y 100

. i o—t/100
y(0)=15 = Inl15=C.s0 Iny =In15— 100" It follows that ln(15) 100 and £ 15 = , SO

y = 15e /1% kg.
(b) After 20 minutes. y = 15e~2%/1% = 15¢™ %% ~ 12.3 kg.

40. (a) If y(t) is the amount of salt (in kg) after ¢ minutes. then (0) = 0 and the total amount of liquid in the tank
remains constant at 1000 L.

‘23; (005 )(5 ﬁ) + (004 kLg) (10 m) - (Tyé(t)—)o L‘f) (15 ?n%)

130 — 3y kg

=0.25 4 0.40 — 0.015y = 0.65 — 0.015y = 200 min

— +1n|130 -3 144 C: since y(0) = 0, we have —3 In130 = C.,
/ 130 3y / 200 27 —3 10! vl = 50 y(0)
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_ ~3t/200
s —§ 0130 ~ 3y| = gft — §1n130 = 1n|130 - 3y| = — ¢ +1n 130 = In(130¢ /%)  and
|130 — 3y| = 130e~3/2%°_ Since y is continuous, y(0) = 0. and the right-hand side is never zero, we deduce
_ —3t/200
that 130 — 3y is always positive. Thus, 130 — 3y = 130e3"/2% and y = 120 (1 —e73/2 ) kg.
(b) After one hour, y = 130 (1 - e_3'60/200) = To(l —e 9) =~ 25.7 kg.
Note: Ast — oo, y(t) — 232 = 431 kg.

#1. Assume that the raindrop begins at rest, so that v(0) = 0. dm/dt = km and (mv)’ = gm =
mv' +om’ =gm = mv +u(km)=gm = v 4+vk=g = dv/dt=g—kv =

/ dvk :/dt = —(1/k)Inlg—kv|=t+C = Inlg—kv|=-kt—kC = g—kv=Ae*
g—krRv

v(0)=0 = A=g.Sokv=g—ge ™ = oy= (9/k)(1 - e_kt). Since k > 0,ast — o0, e ®* —
and therefore, lim v(t) = g/k.
t—oo

k .
42. (a) m% =-kv = % = —% dt = Inl| = _Et + C. Since v(0) = vo, In|vg| = C. Therefore,
In|Y| = —Et = | Y= e~kt/m v(t) = Lvoe /™ The sign is + when ¢ = 0, and we assume
Vo m Vo

v is continuous, so that the sign is + for all . Thus, v(t) = voe¥*/™. ds/dt = voe~*t/™ =

v
s(t) = —%e“’“t/’" + C". From s(0) = so, we get sg = —% +C' s0C" =59 + % and

s(t) = so + % (1 - e‘kt/m). The distance traveled from time 0 to time # is s(£) — s, so the total distance

traveled is lim [s(t) — so] = ™%
t—oo k‘
Note: In finding the limit, we use the fact that & > 0 to conclude that lim e~kt/™ =
- 1kt 1
(b)m— =—kv?® = v = —Edt = Z1_ K +C = - =—-C. Sincev(0) =vy.C = ——
dt v? m v v om Vo
1 d
and % _ Rt + i . Therefore, v(t) = Mo 25 _ __mY% =

kt/m + l/vo kvot+m’ dt ~ kuot +m

_ m kvodt m , . _ 3 T )
s(t) = /kv0t+m . In|kvot +m| + C’. Since s(0) = so. we get s = p Inm+C =

C”zgo—%lnm = S()—so-l- (ln’k’uot-l-m] Inm):so-f-%]

kvot +m .
n|—— 1M . We can rewrite
m

the formulas for v(t) and s(t) as v(t) = ——20 _ and s(t) = so + kvo

1+ (kvo/m)t 1+

ln

Remarks: This model of horizontal motion through a resistive medium was designed to handle the case in which

vo > 0. Then the term —kv? representing the resisting force causes the object to decelerate. The absolute value

in the expression for s(t) is unnecessary (since k. vo, and m are all positive), and tlim 5(t) = oo. In other
—00

words, the object travels infinitely far. However. tlim v(t) = 0. When vo < 0. the term —kv? increases the
—00

magnitude of the object’s negative velocity. According to the formula for s(t). the position of the object
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approaches —oo as t approaches m/k(—wvo): lim  s(t) =

toot i) —o00. Again the object travels infinitely far,

but this time the feat is accomplished in a finite amount of time. Notice also that lim v(t) = —oo when
t——m/(kvo)

vo < 0, showing that the speed of the object increases without limit.
43. (a) The rate of growth of the area is jointly proportional to \/A(t) and M — A(t); that is, the rate is proportional to
the product of those two quantities. So for some constant k, dA/dt = k VA(M — A). We are interested in the

maximum of the function dA/dt (when the tissue grows the fastest), so we differentiate, using the Chain Rule

and then substituting for dA/dt from the differential equation:

%(‘fi—f):k[\/z(—nfi—AHM A)- A*/z%] — 1ka7 288 o+ (M - 4)

= lgA™/? [k\/Z(M - A)] (M — 34] = 1k*(M — A)(M — 34)

This is 0 when M — A = 0 [this situation never actually occurs, since the graph of A(t) is asymptotic to the line

y = M. as in the logistic model] and when M — 34 =0 & A(t) = M/3. This represents a maximum by

A
the First Derivative Test, since % (fit > goes from positive to negative when A(t) = M /3.

Ce\/i/f_kt _1

(b) From the CAS, we get A(t) = M (Wﬁ) . To get C in terms of the initial area Ao and the maximum

— 1 2
area M, we substitute t = 0 and A = Ag = A(0): Ao = M(g—H> & (C+1)VA =(C— VM

o OVA+vVA=CVM-VM & VM+VA =CVM-CVA, &
\/]\_/I+\/A—:C(\/M—\/716) s C= \/_+\/—(Noucethatlon—OthenC’—l)

. . , dv dv dz  dv  mgR’
44, (a) According to the hint we use the Chain Rule: m pri m I d muv iz @+ R)2
2
_ '_gR2 dz ﬁ — ng = = 23 = —-——gR +C =
/vdv— _——_(a:+R)2 = 2—x_‘_R—i—C.Whenw 0,v vo. 50 0+ R
2
C= %vg —gR = %v2 - %vg = mng — gR. Now at the top of its flight, the rocket’s velocity will be 0,
d its height will be z = h. Solving for vo: it = gR’ —-gR =
and its heig| = h. g 0} —3% = TR
2 2
v [ R R(R+h)| _ gRh N _ 2gRh
2_9[ R+h ' R+h R+h w=\VRTR
2gRh _ ~ 2R
= = =+2gR
(b) ve hm v = hm R+ h (R/h) 1 g

(¢) ve = /2 - 32 ft/s2 - 3960 mi - 5280 ft/mi ~ 36,581 ft/s ~ 6.93 mi/s
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APPLIED PROJECT How Fast Does a Tank Drain?

143

1. @QV=m?h = % = 7rr2%% [implicit differentiation] =

e L = L (~avah) = & [n() VEERVE] =~ VR

dt  mr2 dt r2 w22

(b)%:—%\/f—z = hV?dh=-%dt = 2vh=-4t+C.

rO)=6 = 2v6=0+C = C=2v6 = h(t)=(-t+v6)"

(c) We want to find t when h = 0, so we seth = 0 = (— 144t+\/_) = t=1446 ~5min53s.

2, (a)%:k\/ﬁ = h™Y?dh=kdt [h#0] = 2Vh=ki+C

t (ins) h(t) (in cm)
= h(t) = 3 (kt + C)*. Since h(0) = 10 cm. the relation 10 8.7
2\/h(t) = kt + C gives us 2/10 = C. Also, h(68) = 3 cm, 20 75
10 — /3 .
502v3 = 68k +2v/T0and k — ~ Y10 V3 1 30 6.4
34
) 40 5.4
h(t) = Iy V10 — Mt ~ 10 — 0.133t + 0.00044¢>. 50 4.5
4 34
60 3.6
Here is a table of values of A(t) correct to one decimal place.

(b) The answers to this part are to be obtained experimentally. See the article by Tom Farmer and Fred Gass,

Physical Demonstrations in the Calculus Classroom, College Mathematics Journal 1992, pp. 146-148.

N W ogmana @V dn L dh
3. V(t) = nr®h(t) = 1007h(t) = ah = 1007 and praal el 1007 e

Diameter = 2.5 inches = radius = 1.25 inches — & . L foot = % foot. Thus,

d[/ dh 2571' dh Vh
- = _ 1 — = (&) = —
av/2gh = 1007 i 7r(4 ) 2-32h = h = PrTY-

fh—l/zdh=f—l—§5—2dt = 2Vh=-5t+0 = fz—ﬁwk = h(t) = (—mogt +K).

The water pressure after ¢ seconds is 62.5h(t) Ib /ft%, so the condition that the pressure be at least 2160 Ib/ft?

for 10 minutes (600 seconds) is the condition 62.5 - A(600) > 2160: that is. (k— 290 > 290 o

|k~ 3> V3456 = k> 28 4 /3156 Now h(0) = k2. so the height of the tank should be at least

(% + /3456 )" ~ 37.69 ft.

4. (a) If the radius of the circular cross-section at height h is 7, then the Pythagorean Theorem gives
r? = 2% — (2 — h)? since the radius of the tank is 2 m. So Ah) =mr* =n [4—(2-h) )?] = 7 (4h — R?).

Thus,A(h)—:—a,F“zg = n(dh - h?) ‘flh —7(0.01)>VZ 10h =

(4h — h2)dh —0.0001v/20~.
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(b) From part (a) we have (4h/2 — h*/?)dh = (~0.0001v20)dt =

8p3/2 _ 2p5/2 _
*h 2p%/2 = (-0.0001v20)t+ C. h(0) =2 = 3$(2)*°-2(2**=C =

_ 6 ~ . .
C= (1—3- - %) V2 = %\/5 To find out how long it will take to drain all the water we evaluate ¢ when h = 0:

0= (-0.0001v20)t+C =

c 56v2/15  11.2001/10
t= = = 2 ~ 11 ~ .
0.0001v/20  0.0001+/20 3 11,806 s ~ 3 h 17 min.

APPLIED PROJECT Which is Faster, Going Up or Coming Down?

d
Lmv = -pu-mg = m= =—(p+mg) = /_dv_: Lat =
dt pv + mg m

1
In(pv + mg) = ——t+ C [pv+mg > 0]. Att:O,v:vo,soC':l In(pvo + mg). Thus,

"Wl= Q-

1,1 p
= ——t+ - o +m n(pv +mg) = —— n(pvo + mg) =
In(pv + mg) mt + » In(pvo +mg) = In(pv +mg) mt + In(pvo + mg)

pv+ mg = e P/ (pug + mg) = pv = (pvo+mg)e P/ —mg =

v(t) = (’Uo + w)e_pt/m _9
p p

2. y(t) = [o(t)dt = / [(Uo + @)e—pt/m - T_g] dt = (vo + @)e—pt/m (—T> ~-Myyc
p p p p p

Att=0,y=0,50C = <v0+%g>%.Thus,

y(t) = ( + @> n_ ( n w) M -pt/m _ MG _ (,,0 + @) (1 mgt
p p p p p

p p p

3ut)=0 = mﬁ:(ww—g)e—pwm o oetm PRy o &t:m(wH) N
p p m mg

mg
t, = %ln(m‘q—;——pﬂ>. Withm = 1, v = 20, p = 75.and g = 9.8, we have t; = 10In(%2) ~ 1.86s.
p ;
4. y 20 The figure shows the graph of y = 1180(1 — e~ 01t) — 98t. The zeros are

att = Oand to ~ 3.84. Thus, t; —0~ 1.86and t2 —t1 = 1.98. So the
time it takes to come down is about 0.12 s longer than the time it takes to

go up; hence. going up is faster.

-~
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mgiy\m —2pty /m mg
5 y(2t1) = (v + —= —(l—e Pi1 )———‘Qtl
v = (w525 ;

_ (pvo+mg m[l_(eml/m)—j_m&,gm m(’"’—”ﬂ)
p p p p mg

i Vo + M,
Substituting z = eP*1/™ = £2 _ b g
mg mg

(from Problem 3), we get

2 2
y(2t1) = (x._@>%(1—x—2)*%.2ln$:%<z—%—2lnw),N0Wp>0,m>0,t1 >0 =
2 zP-224+1 (z—-1)°

1 1
T =ePtt/m > 0 =1 f(x):m—;~21nz = f’(z):l-}—;—;: 5 =~ > 0 for

z
z>1 = f(z)isincreasing for z > 1. Since f(1) = 0, it follows that f(x) > 0 for every z > 1. Therefore,

2
y(2t1) = m—zgf(ac) is positive, which means that the ball has not yet reached the ground at time 2¢;. This tells us
p

that the time spent going up is always less than the time spent coming down, so ascent is faster.

9.4 Exponential Growth and Decay

. 1
1. The relative growth rate is B % = 0.7944, so % = 0.7944P and, by Theorem 2,

P(t) = P(0)e® 74 = 2e77944¢ Thus, P(6) = 2e7°*(%) ~ 234.99 or about 235 members.
2. (a) By Theorem 2, P(t) = P(0)e** = 60e**. In 20 minutes (3 hour), there are 120 cells, so
P(3) =60e"° =120 = €/*=2 = k/3=In2 = k=3In2= In(2%) = In8.
(b) P(t) = 60e"®)t = 60 . gt
(c) P(8) =608 =60 -2 = 1,006,632.960
(d) dP/dt =kP = P'(8) = kP(8) = (In8)P(8) ~ 2.093 billion cells /h

(e) P(t) =20,000 = 608" =20,000 = 8" =1000/3 = ¢In8 = In(1000/3) =
_In(1000/3)

t
In8

~2.79h
3. (a) By Theorem 2, y(t) = y(0)e** = 500e**. Now Y(3) = 500e*® = 8000 = % — 8000 =
3k=In16 = k= (In16)/3. Soy(t) = 500e("16)/3 _ 500 . 16t/3
(b) y(4) = 500 - 16*/® ~ 20,159
©dy/dt=ky = y'(4)=ky(d)= §1n16(500 - 164/3) [from part (a)] = 18,631 cells/h
(d) y(t) = 500 - 163 = 30,000 = 163 =60 = 3tIn16 =60 = ¢=3(In60)/(In 16) ~ 4.4 h

4 @ y(t) =y(0)e* = y2)= y(0)e** = 600, y(8) = y(0)e®* = 75.000. Dividing these equations, we get
e /e = 75000/600 = €* =125 = 6k=1In125=In5% = 30n5 = k=2%In5=1Ins5.
Thus, y(0) = 600/e** = 600/e' > = 620 — 190

(b) y(t) = y(0)e* = 120e(9)t/2 o — 190 . 5t/2
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(c) y(5) = 120 - 5°/2 = 120 - 25 v/5 = 3000 /5 ~ 6708 bacteria.

(d)

(e

5. (a)

(b)

(©)

6. (a)

(b)

(c)

y(t) =120-5% = 4/(t)=120-5"%-1In5-1 =60 In5-5"2

y'(5) = 60-In5-5%2 =60 -In5 - 25 /5 ~ 5398 bacteria/hour.

y(t) = 200000 < 120eM"9Y2 =200,000 & n9/2 =200 & (In5)t/2=In3%N &
t=(2In22)/In5~9.2h.

Let the population (in millions) in the year ¢ be P(t). Since the initial time is the year 1750, we substitute

t — 1750 for ¢ in Theorem 2, so the exponential model gives P(t) = P(1750)ek(¢=1759)  Then

P(1800) = 980 = 790eF(180071750) o 980 _ ok(50)  — In 38 = 50k =

k= In 29 ~ 0.0043104. So with this model. we have P(1900) = 790¢*(1%°°~17%9) ~ 1508 million. and

P(1950) = 790k(1950-1750) ~, 1871 million. Both of these estimates are much too low.

In this case, the exponential model gives P(t) = P(1850)ek(t~1850) =

P(1900) = 1650 = 1260e*(1900-1850) = In 1650 — k(50) = k = 55 In 1355 ~ 0.005393. So with

this model, we estimate P(1950) = 1260¢*(1950-1850) ~ 9161 million. This is still too low, but closer than the
estimate of P(1950) in part (a).

The exponential model gives P(t) = P(1900)eF(t1990) = P(1950) = 2560 = 1650k(1950-1900) -,
In 288 = (50) = k=g5n 2560 ~ 0.008785. With this model, we estimate

P(2000) = 1650+ (2000~1900) 3979 million. This is much too low. The discrepancy is explained by the fact

that the world birth rate (average yearly number of births per person) is about the same as always, whereas the

mortality rate (especially the infant mortality rate) is much lower, owing mostly to advances in medical science
and to the wars in the first part of the twentieth century. The exponential model assumes, among other things,
that the birth and mortality rates will remain constant.

Let P(t) be the population (in millions) in the year t. Since the initial time is the year 1900, we substitute

¢ — 1900 for ¢ in Theorem 2, and find that the exponential model gives P(t) = P(1900)eF(t—1900)
P(1910) = 92 = 76e*(191071900) = — J51n 32 ~ 0.0191. With this model. we estimate

=

P(2000) = 76€*(20°07199) ~ 514 million. This estimate is much too high. The discrepancy is explained by
the fact that, between the years 1900 and 1910, an enormous number of immigrants (compared to the total
population) came to the United States. Since that time, immigration (as a proportion of total population) has
been much lower. Also, the birth rate in the United States has declined since the turn of the century. So our
calculation of the constant k was based partly on factors which no longer exist.
Substituting ¢ — 1980 for ¢ in Theorem 2, we find that the exponential model gives P(t) = P(1980)ek(‘_1980)
—  P(1990) = 250 = 227¢5(199071980) k= £ In 332 & 0.00965. With this model, we estimate
P(2000) = 227¢k(2000-1980)  275.3 million. This is quite accurate. The further estimates are
P(2010) = 227¢°°* ~ 303 million and P(2020) = 227¢4%% x5 334 million.

500 The model in part (a) is quite inaccurate after 1910 (off
by 5 million in 1920 and 12 million in 1930). The model in

part (b) is more accurate (which is not surprising, since it is

based on more recent information).

2005
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. (a) The mass remaining after ¢ days is (d)
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d ~0.0005¢
(a) If y = [N2Os] then by Theorem 2, d—"i =-0.0005y = y(t) =y(0)e "%t = Ce

(b) y(t) = Ce 209 = 0.9C = 79005 — (9 = _0.0005t=1n0.9 =
t=—20001n0.9 ~ 211 s

Yy
y(t) = y(0)e* = 800e**. Since the half-life is 5.0 days, 800
y(5) = 800e®* =400 = * =1 =
5k=Ini = k=—(In2)/5,s0
y(t) = 800e~Un2)t/5 — gog . 27*/5,

(b) y(30) = 800 - 273%/% = 12.5mg

(©) 800e~M2*® =1 & —(In2)t=1Ingk = ~In800 0

2001

&t =518 ~ 48 days

(a) If y(¢) is the mass (in mg) remaining after ¢ years, then y(t) = y(0)e** = 100e**. y(30) = 100e3°F = 1(100)

= &% =3 = k=-(In2)/30 = y(t)=100e"("Dt/30 _ 100 .9-t/30

(b) y(100) = 100 - 27190/30 ~ 9,92 mg

(c) 100e™" D0 =1 = —(In2)t/30=Ingk; = ¢=-30100 ~ 1993 years

(a) If y(t) is the mass after ¢ days and y(0) = A, then y(t) = Ae*. y(3) = Ae®* = 0.584 =
e =058 = 3k=In058 = k=1In0.58 Then Ae(n0)t/3 _ A &
(In0.58)t/3 __ 1 (IH 058)t — 1 Vife - _ 3In2 ~ 9 ]
Ine =n; & s In 3, so the half-life is ¢ 0358 3.82 days
(In0.58)t/3 __ (h’l 058)t - 1 _ _311'1 10 ~ 192
(b) Ae =0.104 T =g e =~ 1268 days

Let y(¢) be the level of radioactivity. Thus, y(t) = y(0)e™** and k is determined by using the half-life:
y(5730) = 3y(0) = y(0)e T = Ly(o) = IR _1

2
Ini In2

- 1 =-—2 = _= 1 th that y(t) = 0.74
5730k =Ini1 = % 5730 — B730° If 74% of the '*C remains, then we know tha y(t) = 0.74y(0)
= 074=e D50 pggy T2 5730(In0.74) A 2489 ~ 2500 years.

5730 In2
From the information given, we know that j—: =2y = y = Ce* by Theorem 2. To calculate C we use the
point (0,5): 5 = Ce*® = (O = 5. Thus, the equation of the curve is y = 5e?°.
(a) Using Newton’s Law of Cooling, Cfi—T = k(T — Ty). we have d—T = k(T - 75).

Nowlety =T — 75.50 y(0) = T(0) — 75 = 185 — 75 — 110 S0 y is a solution of the initial-value
problem dy/dt = ky with y(0) = 110 and by Theorem 2 we have y(t) = y(0)e** = 110",

— 30k __ 30k _ 75 _ 15 _ 15
(30) = 110e =150-75 = ¢ =110 — 25 = k= % nﬁ,

s0y(t) = 110e30*1(42) and y(45) = 110%5 (%) ~ 62°F Thus, T(45) ~ 62 + 75 = 137°F.
O T(t) =100 = y(t) = 25. y(t) = 110e3°™(8) = 25 = cdtm(3) _ 25 _

110
301n 25
1 15 _ 1. 25 _ 110 .
—sotln 22 =In 10 = t= F ~ 116 min.

22
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14. (a) Let T'(t) = temperature after ¢ minutes. Newton’s Law of Cooling implies that Z—f = k(T — 5). Let

d
y(t) = T(t) — 5. Then d_i = ky,soy(t) = y(O)ekt = 15eFt = T(t) =5+ 15¢kt =
T(1) =5+ 15¢F =12 = € = % = k= ln1—75, soT(t) =5+ 15em(7/19)t 404

T(2) = 5+ 15e2™(7/1%) ~ 8.3°C.

L
(b) 5 + 15 (7/19t — 6 when /1)t = L = In(E)t= nit = t= ;n 2~ 3.6 min
nig
dT
15. T = k(T — 20). Letting y = T — 20, we get % = ky, so y(t) = y(0)e**.

y(0) = T(0) — 20 = 5 — 20 = —15, 50 y(25) = y(0)e*** = —15¢>°*, and

y(25) = T(25) — 20 = 10 — 20 = —10,50 —15¢?* = —10 = €*** = 2. Thus, 25k = In(3}) and

k=5In (g) s0 y(t) = y(0)er = —15€(1/28) In(2/3)t More simply, €2°% = % = eF= (%)1/25 =

ekt — (%)t/25 = y( ) 15 ( )t/25

(a) T(50) = 20 + y(50) = 20 — 15 - (2)°*/** =

t/25 /25 t/25

(b) 15 = T(t) = 20+ y(t) =20 — 15 (2)"** = 15. (%)/ = (2)*=% =

(t/25) In(3) =In(}) = t=25In(3)/In(3) =67.7

5-(2)=20-%=133°C

d
16. 71% — k(T — 20). Lety = T — 20. Then % — ky. 5o y(t) = y(0)e.  y(0) = T(0) — 20 = 95 — 20 = 75,
kt dT’ °C /i - dy
so y(t) = 75e**. When T'(t) = 70, i —1°C/min. Equivalently, i —1 when y(t) = 50. Thus,

-1= ZZ = ky(t) = 50k and 50 = y(t) = 75e*t. The first relation implies k = —1/50, so the second relation

says 50 = T5e~V/%, Thus, e/ = 2 = —t/50=1n(3) = t=-50In(3) ~ 20.27 min.

17. (a) Let P(h) be the pressure at altitude h. Then dP/dh = kP = P(h) = P(0)e*" = 101.3¢*".

P(1000) = 101.3¢}°°%% = 87.14 = 1000k = 1n(87 1) =

k=10 (32) = P(h)=1013 et n(34) 5o P(3000) = 101.3¢3*(%673) ~ 64.5 kPa,

(b) P(6187) = 101.3 e 1865 "(1673) ~ 39.9 kPa

18. (a) Using A = Ao(l + %)"t with Ao = 500, = 0.14, and t = 2, O
we have:
() Annually: n = 1; A =500(1+ %4)"* = $649.80
(ii) Quarterly: n = 4; A =500(1+ &14)*? = $658.40
(iii) Monthly: n = 12; A =500(1 + %4)"** = $660.49 . ,
(iv) Daily: n = 365; A =500(1 + $32)* = $661.53 200
(v) Hourly: n = 365 - 24; A = 500(1 + 53247) """ = $661.56 Ao.14(2) = $661.56,
(vi) Continuously: A = 500e(14)2 = $661.56 Ao10(2) = $610.70. and

Ap.06(2) = $563.75.
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nt
19. (a) Using A = Ao(l + %) with Ag = 3000, r = 0.05, and t = 5. we have:

() Annually: n =1; A =3000(1 + 228" — $3828.84

(i) Semiannually: n = 2; A = 3000(1 + 298)%° — $3840.25
(iii) Monthly: n = 12; = 3000(1 + %%)'*° = $3850.08
(iv) Weekly: n = 52; =3000(1 + %%)°*° = $3851.61
(v) Daily: n = 365: A =3000(1 + £98)°°%® — §3852.01
(vi) Continuously: A = 3000e(0:99)% — $3852.08

(b) dA/dt = 0.05A4 and A(0) = 3000.
2. (a) Aoe™ ™ =240 & =2 & 006t=ln2 & t=>30In2~ 1155 so the investment will
double in about 11.55 years.
(b) The annual interest rate in A = Ao(1 + r)t is 7. From part (a), we have A = A¢e®°%t. These amounts must be
equal,so (1+7)" =€ = 149 =09 = =09 _ 1 (0618 = 6.18%. which is the
equivalent annual interest rate.

21. (a) E =kP—-—m = k(P — %) Lety =P — % ) ZZ; (fit and the differential equation becomes
.d_ M (p MY =T (R Yok
i ky. The solution is y = ype** = P L (P() A )e = P@#)= . + (R 2 )

(b) Since k > 0, there will be an exponential expansion < P, — % >0 & m<kp,.

(c) The population will be constant if Py — % =0 & m=kP,. Itwill decline if Py — % <0 &
m > kP,.

(d) Po = 8,000,000, k = a — 8 = 0.016, m = 210,000 = m > k Py (= 128,000), so by part (c), the
population was declining.

22, (a) =ky't* = y 'Cdy=rkdt = y_—c =kt + C. Since y(0) = yo. we have C' = y_oc . Thus,
y‘c _ yo P . 1 Yo Yo
c Yo —ckt.Soy Vo —okt 1= cyckt and y(t) 0= cuht) "

(b) y(t) — coas 1 — cySkt — 0, that is. as ¢ —s Lk Define T = Lk Then lim y(t) = oo.
Yo Yo t—T—

(¢) According to the data given, we have ¢ = 0.01, y¥(0) = 2, and y(3) = 16, where the time ¢ is given in months.

1
Thus. yo = 2and 16 = y(3) = #. Since T = . we will solve for cySk.
(1 — cysk - 3)/ cygk v
2
0= g = 1=3ik=(3)"" =870 = sk = 1(1—8-%0) Thys, doomsday

(1 — 3eygk)'0°
1

occurs whent = T = ——
cysk

3
=1 _g-o01 g—001 ~ 145.77 months or 12.15 years.
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APPLIED PROJECT Calculus and Baseball

dv
1. @Q F=ma=m pr so by the Substitution Rule we have

P Ty —

(b) (i) We have v; = 110 mi/h = 223280) £/ — 161.3 ft/s, vo = —90 mi/h = —132 ft/s, and the mass of the

. w 5/16 . .
baseball ism = — = == = % So the change in momentum is
g

p(t1) — p(to) = mv1 — muo = 25 [161.3 — (—132)] ~ 2.86 slug-ft/s.
(ii) From part (a) and part (b)(i), we have jo 0ot F(t)dt = p(0.001) — p(0) ~ 2.86, so the average force over

the interval [0,0.001] is 527 [ °°" F(t) dt ~ 5357 (2.86) = 2860 Ib.

dv dv ds dv
2 (W= ds, where F’ — =m-—— = — ituti
(a) / F(s)ds, where F(s) =m g " d - ™ s and so, by the Substitution Rule,
s1 dv v(s1) »
W = s)ds = my —ds = mudv = [1mv2] l = —mv1 1mv3
S0 ds v(s0) : v

(b) From part (b)(i), 90 mi/h = 132 ft/s. Assume vo = v(s0) = 0 and v1 = v(s1) = 132 ft/s (note that s, is the
point of release of the baseball). m = % so the work done is

W = 1mo? — Imo? = 1. 25 (132)° ~ 85 ftlb

3. (a) Here we have a differential equation of the form dv /dt = kv, so by Theorem 9.4.2, the solution is

v(t) = v(0)e*. In this case k = — 5 and v(0) = 100 ft/s, so v(t) = 100e~ /. We are interested in the

time ¢ that the ball takes to travel 280 ft, so we find the distance function

o(t) = [* v(z) do = [ 100e™*/*° dz = 100~ 10e‘m/10] = ~1000(e~*/0 — 1)

0

— 1000(1 _ et/ 10)

Now we set s(t) = 280 and solve for t: 280 = 1000(1 - e_t/10> = 1-e /0= 215 =

~Lt=In(1-4) = t= 3.285seconds.

(b) Let z be the distance of the shortstop from home plate. We calculate the time for the ball to reach home plate as
a function of . then differentiate with respect to z to find the value of = which corresponds to the minimum
time. The total time that it takes the ball to reach home is the sum of the times of the two throws, plus the relay
time (% 5). The distance from the fielder to the shortstop is 280 — . so to find the time ¢, taken by the first

o—t1/10 _ 280 — L 720+
1000 1000
We find the time t2 taken by the second throw if the shortstop throws with velocity w, since we see that this

throw, we solve the equation s1(t1) =280 —z < 1-—

velocity varies in the rest of the problem. We use v = we~t/10 and isolate ¢2 in the equation
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_ T 10w — ..
s(te) = 10w<1 - e“z/m) =z & e 2/10_71_ 0w © to = —10In oo 0 the total time is
1 720 + x 10w -z .. e S
== — . To find the minimum, we differentiate:
tw(z) = 3 lﬂ[ln 1000 +1In 100 } o fin,

1
dt, 1{ 1

—_— = — . which changes from negative to positive when 720 +z = 10w —z &
dz 7204+z 10w—<z

x = 5w — 360. By the First Derivative Test, t,, has a minimum at this distance from the shortstop to home

plate. So if the shortstop throws at w = 105 ft/s from a point z = 5(105) — 360 = 165 ft from home plate, the

.. . . 5 —_ 6 ~ . . .
minimum time is ¢105(165) = § — 10(In 222388 4 |y 1080=165) ~ 3 431 seconds. This is longer than the
time taken in part (a), so in this case the manager should encourage a direct throw.

If w = 115 ft/s, then = 215 ft from home, and the minimum time is

t115(215) = 2 — 10(In 1204215 4 |n L8D=215) ~ 3.242 seconds. This is less than the time taken in part (a),

s0 in this case, the manager should encourage a relayed throw.

(c) In general, the minimum time is 345
1 360 + 5w 360 + 5w
_ - _ 1
tw (5w — 360) 5 10|1n 1000 +1In 10w
=3.285
1 (w+72)° !
=5~ 10In 400w t0s ~ NJ s
325

We want to find out when this is about 3.285 seconds, the same time as the direct throw. From the graph, we

estimate that this is the case for w &~ 112.8 ft/s. So if the shortstop can throw the ball with this velocity, then a
relayed throw takes the same time as a direct throw.

9.5 The Logistic Equation

1. (a) dP/dt = 0.05P — 0.0005P% = 0.05P(1 — 0.01P) = 0.05P(1 — P/100). Comparing to Equation 1,
dP/dt = kP(1 — P/K), we see that the carrying capacity is K = 100 and the value of k is 0.05.

(b) The slopes close to 0 occur where P is near 0 or 100. The largest slopes appear to be on the line P = 50. The
solutions are increasing for 0 < Py < 100 and decreasing for Py > 100.

(c) P All of the solutions approach P = 100 as ¢ increases. As
P =140 150 N N
0 =140—<{ < <
P=120— 2

AT T T T Y N N NN . . . .

NNINSANNIANININNIN in part (b), the solutions differ since for 0 < Py < 100
‘‘‘‘‘ they are increasing, and for Py > 100 they are decreasing.

Also, some have an IP and some don’t. It appears that the

solutions which have Py = 20 and P, = 40 have
inflection points at P = 50.

(d) The equilibrium solutions are P = 0 (trivial solution) and P = 100. The increasing solutions move away from

P = 0 and all nonzero solutions approach P = 100 as t — oo.
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2. () K =6000and k = 0.0015 = dP/dt = 0.0015P(1 — P/6000).

(b) P All of the solution curves approach 6000 as ¢ — oo.

80004~~~ aNaaNNNNINNNINNNNNS

NSNS SSSNSSSSSSSSSSSSS

0 500 1000 1500 2000 !

(c) 800(‘; e s The curves with Py = 1000 and Py = 2000 appear to be
concave upward at first and then concave downward. The
curve with Py = 4000 appears to be concave downward
everywhere. The curve with Py = 8000 appears to be

concave upward everywhere. The inflection points are

where the population grows the fastest.

0 500 1000 1500 2000 ¢

(d) See the solution to Exercise 9.2.25 for a possible program to calculate P(50). [In this case, we use X = 0,
H=1.N =50, Y: = 0.0015y(1 — y/6000). and Y = 1000.] We find that P(50) ~ 1064.

(e) Using Equation 4 with K = 6000, k = 0.0015. and Py = 1000, we ® g000

K 6000
have P(t) = T AeF — 1+Ae—0.0015t’Where

K—P, 6000 — 1000
— = = 5. Th S
Bo 1000 5. Thus

P (50) = —1_-%%(?0_15@ ~ 1064.1, which is extremely close to 0 2000

A

the estimate obtained in part (d). The curves are very similar.

d K . K —y(0) .
3. (a d_zt/ = ky(l - }yZ) = y(t)= 15 Aokt with A = —ﬁ With K = 8 x 107, k = 0.71, and

8 x 107 8 x 107
y(0) = 2 x 107, we get the model y(t) = T3 3e-071t" %0 y(1) = T3 30071 ~ 3.23 x 107 kg.
8 x 107 —o. —o.
(b)y(t)=4><107 = W:4X107 = 2=1+3e 071t o 607”:% =

—0.71t=In% = t= El)n??’l- ~ 1.55 years

4. (a) P j (yeast cells) (b) An estimate of the initial relative growth rate is
700 + . — —
1 . iﬂ;i‘u:l:0.583_
1 . Py dt 18 2-0 12
(c) An exponential model is P(t) = 18¢7t/12. A
+ . . 680
100+ logistic model is P(t) = mﬁ, where
0 : : : t _ 680—18 _ 331
5 10 15 (hours) A= 18 - 9 -

From the graph, we estimate the carrying capacity

K for the yeast population to be 680.
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(d) 700 P (yeast cells)
Time in Observed Exponential Logistic —
Hours Values Model Model :
0 18 18 18 )
2 39 58 55 )
-1 + —5 19
4 80 186 149 —50 (hof, -
6 171 596 322
8 336 1914 505 The exponential model is a poor fit
10 509 6147 614 for anything beyond the first two
12 597 19.739 658 observed values.
The logistic model varies more for
1 040 05,389 073 the middle values than it does for
16 664 203,558 678 the values at either end, but provides
18 672 653.679 679 a good general fit, as shown in the
figure.
680

(e) P(7) = ~ 420 yeast cells

1+ 3_318—7(7/12)

5. (a) We will assume that the difference in the birth and death rates is 20 million/year. Let ¢ = 0 correspond to the

1 dP 1 1
i illi leulations. k ~ = — = —(0.02) = —
year 1990 and use a unit of 1 billion for all calculations. k 2T 53 (0.02) 265

dP P 1 P L.
ar _ I U — = ). Pinbili
dt kP<1 K) 265P<1 100) in billions

K-P 100-53 947 K 100
b A==—p= =520 T3 T80T P(t) = s = T I
P(10) & 5.49 billion.

, SO

(¢) P(110) ~ 7.81, and P(510) & 27.72. The predictions are 7.81 billion in the year 2100 and 27.72 billion
in 2500.

50
(@) If K = 50, then P(t) = T @7 s S0 P(10) ~ 5.48, P(110) ~ 7.61, and P(510) ~ 22.41. The
3

predictions become 5.48 billion in the year 2000, 7.61 billion in 2100, and 22.41 billion in the year 2500.

6. (a) If we assume that the carrying capacity for the world population is 100 billion, it would seem reasonable that the
carrying capacity for the U.S. is 3-5 billion by using current populations and simple proportions. We will use
K = 4 billion or 4000 million. With ¢ = 0 corresponding to 1980, we have

4000 4000
P(t) = =
( ) 14+ (40035—0250) e—kt 1+ 15e—kt
4000 80
b) P(10) = 27 — —10k _ 4000 =10k _ _11
(b) P(10) = 275 = T i5e=ior =275 = 1+15¢ N = e = =

10k =In{8 = k=-L1n19 ~ 001019992

(c) 2100 — 1990 = 110 and P(110) = 680 million.
2200 — 1990 = 210 and P(210) ~ 1449 million, or about 1.4 billion.
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4000
(d)P(t)=300 = m=300 = 1+15€_kt=4—30 = e‘kt=%~%5 = —ktzln%é

37
n 37

= t=10 ﬁ ~ 19.19 ~ 19. So we predict that the U.S. population will exceed 300 million in the year
165

1990 + 19 = 2009.

.o d
7. (a) Our assumption is that d—? = ky(1 — y), where y is the fraction of the population that has heard the rumor.
. _ . dP P . P dP dy
b) Using the logist t ), — =kP(1—— =—,P= — =K—
(b) Using the logistic equation (1) 7 k (1 K) , we substitute y 7 P =Ky, and 7 K 2 to
. dy dy L . .
obtain K i k(Ky)(1-y) & pri ky(1 — y), our equation in part (a). Now the solution to (1) is
K K-P . K
P(t) = ————— . where A = . Wi i i =
(t) T A where P e use the same substitution to obtain Ky - K — Ko -
Yo Kyo
Y

~yo+ (1 —yo)e R
Alternatively. we could use the same steps as outlined in “The Analytic Solution,” following Example 2.

(c) Let t be the number of hours since 8 A.M. Then yo = (0) = 25 = 0.08 and y(4) = 150

1w 0.08
2 = Y™ T 0,08+ 0.92¢ %

0.08 = 2 Solving this equation for ¢, we get

T 0.08+0.92(2/23)*  2+23(2/23)*

2\* 2\Y* 2-2y 2\* 2 1-y
—_ = —_— = —_— = —_— — =
2y+23y(23> 2= (23) 3y \23 23 "y

KAt Inf(1 — In((1 —
2 _ 1Y ppoltows that £ — 1= ROV oy 1+l((—2i)/i)].
23 y 4 In 53 In 55

Thus. 0.08 + 0.92e=* = 0.16, ™4 = 2% — 2 ande™* = (Z)"*. 50

Y

]__
When y = 0.9, —-y—y- =

have heard the rumor by 3:36 P.M.

Ol

sot = 4(1 — In9 > ~ 7.6 h or 7 h 36 min. Thus, 90% of the population will

2
In 35

8. (a) P(0) = P, = 400, P(1) = 1200 and K — 10.000. From the solution to the logistic differential equation

PK 400 (10,000) 10,000
- - - P(1) =1200 =
Pl) = g K= Ryer V& P = 100+ (9600)e—* 1+ 2deFt )
10,000 10,000
_ k _ _ 36 _ s _ s
1-}-24&3’“:110—2Q = e —288—8- = k:—lnll.SoP—1+24e_“n(36/11) 1+24~(11/36)t.

10,000
1+ 24(11/36)"

14U =1 = tinil =Ing; = t~2.68years.

(b) 5000 = L

&P 1 dP p\dP] ,dP( P P)
e e _PNeT | et 1=
a2 k[P< Kdt>+<1 K> dt] dt( Tk

Aols- D))

(b) P grows fastest when P’ has a maximum, that is, when P’ = 0. From part (a), P” =0 <& P=0,P=K,
or P=K/2. Since 0 < P < K.weseethat P/ =0 & P =K/2.
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10. First we keep k constant (at 0.1, say) and change Py in the function
1 . . .
= 0F . (Notice that P is the P-intercept.) If
P+ (10 — Po)e_o'lt
Py = 0, the function is 0 everywhere. For 0 < Py < 5, the curve has
50 an inflection point, which moves to the right as Py decreases. If
5 < Py < 10. the graph is concave down everywhere. (We are
considering only ¢ > 0.) If Py = 10. the function is the constant function P = 10, and if P, > 10, the function
decreases. For all Py # 0, tlim P =10.
—00
Now we instead keep P, constant (at Py = 1) and change k in the
L 10 .
function P = —————_ It seems that as k increases, the graph
1+ 9e—kt
approaches the line P = 10 more and more quickly. (Note that the
only difference in the shape of the curves is in the horizontal scaling;
if we choose suitable x-scales, the graphs all look the same.)
11. (a) The term —15 represents a harvesting of fish at a (by P
12007 v v v v by oy
constant rate—in this case, 15 fish/week. This is the NN
rate at which fish are caught. B0F==========:==
wFfZZZZZZZZZZZ2
o 40 80 120 ¢

(c) From the graph in part (b). it appears that P(t) = 250 and P(t) = 750 are the equilibrium solutions. We
confirm this analytically by solving the equation dP/dt = 0 as follows: 0.08P(1 — P/1000) - 15=0 =
0.08P —0.00008P? ~ 15 =0 = —0.00008(P> — 1000P + 187,500) =0 =
(P—250)(P—-1750)=0 = P =250 o0r 750.

(d) 1205- For 0 < Py < 250, P(t) decreases to 0. For Py = 250, P(t)
remains constant. For 250 < Py < 750, P(t) increases and
approaches 750. For Py = 750, P(t) remains constant. For

Py > 750, P(t) decreases and approaches 750.

8 dt

P P 1
~12,500 5= = P2 _ 1000P + 187500 < =—
dt (P—250)(P—750) 12800 % ©

~1/500  1/500 1
= —— — L
/(P—250 + P~750) b =-1 500 < /<P 250 P-750) P =g dt

dP P 100,000 aP 100.000
— =008P(1-——) — 2_15). (2220
© — < 00 0) 15 & = (0.08P — 0.00008P? — 15) ( 3 )




200, then

Ift=0and P
P 1200

t+C <

1

25

P-2
et/?P+C = ket/? o 50 — ket/?® o P — 250 = Pke'/?® — 750ket’/?® &
1 — ket/25

P —250

P —750
250 — 750ket/ %8

In
et/25 +9

P(t) =
750 (et/ 2 4 3)

P — 1750

t+C <
&

1

25

Similarly, if ¢ = 0 and P = 300, then

> and P(t)

1

11

< 200 — 200k = 250 — 750k &

et/25 — 11

250 — 750k
250(3et/25 —11

-
B I NN 22 - s I 2
\\\\\ il wevoeosossttrstssssssseck
\\\\\ il 0100111110000
P L LN NN 22222 Tt 011000001500z
\\\\\ cort] e B
B N NN 1 722222 P e 011000000770 0000
P NN NN 222 O G S dadad 11100002000 0072
\\\\\ il ie b1
P TN N2 == S T zas
P I N AR 12222 S i L01000000000050 0z
\\\\\ ol P e
e NN N RN 222 I i e GPIIIIIII I s e
Pt R

8 & g & 3

oo 7 TN L \\H
oo T TN /7
Pz INNNSSSSSSSS T2
coerr TN/
coeas I IINNNYWL A R
coerr PPN 7
cecrr T TN /7
P2 AN SSSSSSSS\N
ool TN /4R
ooz PN 7
ez AN
oo PN 7

c=10

coevecrsst 1111111177223
\\\\\\ sorttt 111127227
\\\\\ coert 1111111172222
\\\\\ corst 1111111072
\\\\\\ coert 11111117722
\\\\\ coortt 1111707722
\\\\\\ crrttt 111707722
\\\\\\ s
\\\\\ corrr 1111111777243
\\\\\ crerr 011111177727
\\\\\\ cort 111127222
\\\\\\ ottt 111177222

» Py
1+

P — 250
P —1750

In|P — 250| — In|P — 750|
P — Pke!/? = 250 — 750ke"/?
k= ~%. Simplifying P with these two values of k gives us

550k =50 & k
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200

12. (a)

\\\\_///////,,,,///,/,/L.mw \\\\\ Tz

oW s e il

o7 IANNAI R RS S S N ceccerrrtll]

27 IS AR S SR Pl

ozl R e o0l

DT IELSSSSS SNCRNRNANRN Y ceccessitl]l

sy T e o

sozfINNN S s s | T e cerrlf]

227 TN S S S SR cecccrrrrl]]

D7 AR TS SRNRRNNNN Y coeersr st LN 10222

co7fIANMIS S S S s SN e il

sorf IS s | e il
TEE S B NP Ht

IS & g S &

c=30
< 20. For

2(—0.00008)
~0.00032c>0 & c

120 1
— 2 _4(— —
0.08 + +/(0.08)2 — 4(—0.00008)(—c) _which has at

= 0.0064

c=25
= P is decreasing.

P

=0

dP

dt
). fm < P < K, then dP/dt = (+)(+)(+) =+ = P isincreasing.

(B =~

m

P

)0
If0 < P < m, then dP/dt

1)

K

c=21

< ¢ < 20. there is at least one equilibrium solution. For ¢ > 20, the population always dies out.
(kP) (1 -

dP

dt

dt
0 < ¢ < 20, there is at least one value of P such that dP/dt = 0 and hence, at least one equilibrium solution.

least one solution when the discriminant is nonnegative
For ¢ > 20. dP/dt < 0 and the population always dies out.

(©) 4P _ 08P - 0.00008P - c.
(d) The weekly catch should be less than 20 fish per week.

(b) For 0

13. (a)
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(b) U k =0.08. K =1000.and m = 200 =

NN dP P 200
NI & o, I I T
\\\\\ dt 008P<1 1000)( P)

For 0 < Py < 200. the population dies out. For Py = 200, the

17700z
Yy
[10000-

\
)

N\ 77770~

AR\ \

NS

SN

///////

population is steady. For 200 < Py < 1000, the population

W === increases and approaches 1000. For Py > 1000, the population

0] 2 40 6 s 1o decreasesand approaches 1000.
The equilibrium solutions are P(¢) = 200 and P(t) = 1000.

(c)%:kP(l—%) (1-2) :kp(%) (P—;ﬁ> = 2K -P)(P-m) ©
| we=ie =[x

1 A B
13 i f i = S — " —
y partial fractions, K—P)\P-m) K_P + S0 A(P-m)+ B(K - P) =1.

1 1 1 1 1 k
IfP=m B= P =K. A= , - [k
mES gt PR As SOK—m/(K—P+P—m>dP /Kdt =

1 k 1 P—-m k
_— —1 —_— —_ = — = —
K—m( n|K — P|+1In|P —m)|) Kt-{-]VI = _mln K—P’ Kt+M =
P—-m k P-
In|o—p| = (K —m)Zt+ M ﬁ:pe“—m)"“/")t [D = +eM],
Po—m P — Py —
Lett = 0: KO—PO =D. So K—T; = ﬁem_m)(k/mt. Solving for P, we get

P(t) = MU = Po) + K (Py — m)et—mt/Ke
K — PR+ (P — m)eE-m*/K)e

(d) If Py < m, then Py —m < 0. Let N (t) be the numerator of the expression for P(t) in part (c). Then
NO)=P(K-m)>0,and Py —m < 0 < Jim K (Py —m)eF=mE/H0t - o oy
—00

lim N(t) = —oo. Since N is continuous, there is a number ¢ such that N(t) = 0 and thus P(t) = 0. So the

t— o0

species will become extinct.

dP K dP K
1, _ dP
(a) Ty —cln<—P) P = /EPln(K/P) :/cdt‘ Letu = ln(—p> =InK-InP = du= -5

du
= /—7 =ct+D = hful=-ct-D = [u] = e~(ct+D) [In(K/P)| = e~(ct+D)
In(K/P) = +e™“**P)_ Letting t = 0. we get In(K/Py) = +e~ P, 50

In(K/P) = e P = e~te=D — In(K/Po)e™* = K/P = nE/Poe™

P(t) = Ke™ ln(K/PO)(:_"i’ c # 0.

() lim P(t) = lim Ke™"(K/Po)e™" _ pro=In(K/Po)}0 _ prp0 _ pe
—00 t—o0
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©) P 1000

The graphs look very similar. For the Gompertz function,

P(40) = 732, nearly the same as the logistic function. The

Gompertz function reaches P = 900 at ¢t ~ 61.7 and its value at
P = 1000¢" (10700 t = 80 is about 959, so it doesn’t increase quite as fast as the

0 80 logistic curve.
t

dP K
(d) i cln(F> P=cPlnK—-InP) =

d*p 1 dP dP dP K
— T P —— — —_— — — —— J— —_—
i c[ ( dt>+(an In P) dt] =c— [ 1+ln( )]

= c[cln(K/P) P|[In(K/P) — 1] = ¢ PIn(K/P) [In(K/P) — 1]

Since0< P<K.P'=0 & In(K/P)=1 & K/P=e & P=K/e P">0for
0< P < K/eand P" < 0for K/e < P < K.so P’ is amaximum (and P grows fastest) when P=KlJe.
Note: If P > K, then In(K/P) < 0,s0 P"(t) > 0.

15. (a) dP/dt = kPcos(rt —¢) = (dP)/P = kcos(rt —¢)dt = f(dP)/P =k [ cos(rt — ¢)dt =
In P = (k/r)sin(rt — ¢) + C. (Since this is a growth model, P > 0 and we can write In P instead of In|P|.)
Since P(0) = P, we obtain In Py = (k/r)sin(—¢) + C = — (k/r)sing+C =
C =In Py + (k/r)sin. Thus, In P = (k/r)sin(rt — ¢) +In FPo + (k/7) sin ¢, which we can rewrite as
In(P/Py) = (k/r)[sin(rt — ¢) + sin ¢] or, after exponentiation, P(t) = Poelk/mlsin(rt=¢)+sin el

(b) As k increases, the amplitude As r increases, the amplitude A change in ¢ produces slight
increases, but the minimum and the period decrease. adjustments in the phase shift
value stays the same. and amplitude.

7 7
! !
Comparing values of k with Comparing values of r with Comparing values of ¢ with
Py=1.r=2and ¢ = /2 P,=1,k=1and ¢ = m/2 P,=1lk=1landr=2

P(t) oscillates between Poelk/m(+sin®) ang Ppelk/M (= 14510 9) (the extreme values are attained when rt — ¢

is an odd multiple of %), so tlim P(t) does not exist.

16. (a) dP/dt = kP cos*(rt —¢) = (dP)/P = kcos®(rt — ¢)dt = [(dP)/P =k [cos®(rt —¢)dt =

InP = k/ 1+ COS(22(Tt —9)) dt = gt + Zk; sin(2(rt — ¢)) + C. From P(0) = Po. we get

k .
InPy, = £sin(—2¢) +C=C - L2 sin2¢. so C = In Py + — sin2¢ and
4r 4r 4r
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InP = gt + 4£ sin(2(rt — ¢)) + In Py + 4 Sin 2¢. Simplifying, we get
T

In g) = gt + 4—]:” [sin(2(rt — ¢)) + sin2¢] = f(t). or P(t) = Poef®.

(b) An increase in k stretches the An increase in 7 compresses the As in Exercise 15, a change in ¢
graph of P vertically while graph of P horizontally—similar only makes slight adjustments in
maintaining P(0) = P. to changing the period in the growth of P, as shown in the

Exercise 15. figure.
P9 P9
r=1-
r=2

1 0 1 0 1

! 1 1
Comparing values of k with Comparing values of r with Comparing values of ¢ with
Po=1,r=2and ¢ = 7/2 Py=1,k=0.5,and ¢ = 7/2 Py=1k=0.5andr =2

F'(8) = k/2 + [k/(4r)][2r cos(2(rt — )] = (k/2)[1 + cos(2(rt — $))] > 0. Since P(t) = Pyef® we
have P'(t) = Py f'(t)ef®) > 0, with equality only when cos(2(rt — ¢)) = —1; that is, when rt — ¢ is an odd
multiple of 3. Therefore, P(t) is an increasing function on (0,00). P can also be written as

P(t) = Pyer*/2e(k/4n)[sin(2(rt=¢))+sin 2] The sacond exponential oscillates between e(*/47)(1+sin2¢) 59

eR/AN)(=14sin26) \hile the first one, e*/2, grows without bound. So lim P(t) = co.

t—o0
) K . . 1
17. By Equation (4), P(t) = T Acm By comparison, if ¢ = (In A) /k and u = 5k(t — ¢), then

u _—u u —u U -u u —u
1+tanhu=1+e € __¢& *te +e < - 2e -6—2‘2
eu + e—u eu + e—u eu + e—u eu + e—-u e—u 1 + 6—2‘11.

and e-Zu — e—k(t—c) — ekce—kt — elnAe—kt — Ae_kt, S0

K K 2 K K
1 1 - —
sK|[1 +tanh(§k(t—c))] =3 [1+4 tanhu] = 2 The®™ ~15om — ] peri P(t).

9.6 Linear Equations

1. ' + e®y = 2%y? is not linear since it cannot be put into the standard linear form (1), y’ + P(z)y = Q(z).

. . 1 sin x . L. .
2 y+sinz =23 = %y —y =sinz = y + (-m—3> y= 5 This equation is in the standard linear

form (1), so it is linear.

1 L
3oy +lnz—2%y=0 = zy ~ 2’y =—Ilnz = v+ (—z)y = —%, which is in the standard linear
form (1), so this equation is linear.

4. y' + cosy = tan is not linear since it cannot be put into the standard linear form (1), y + P(z)y = Q(z).
[cos y is not of the form P(z)y.]
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5. Comparing the given equation, ¥’ + 2y = 2€”, with the general form, y' + P(z)y = Q(z), we see that P(z) = 2
and the integrating factor is I(z) = e/ Pl@dz — of 2dv _ o22 Myltiplying the differential equation by I(z) gives
e2xy/+2e2my:263x = (e2zy)/ :2632 = 621y:f2632d$ = e2a:y: §e3x+c =
y= %e‘” +Ce %,

[ P(z)dx

6.y =z+5y = y -dy=zl(z)=e = el (=8)dz — ¢=5% Multiplying the differential

—5z, /

equation by I(z) gives e” "y — 5¢ 5%y = e

5z

= (e_hy)' =ze~ =

ey = [ze dz = —1ge 5" — z=e P+ C [byparts] = y= Iz %+ Ce™®

7.2y’ — 2y =z [dividebyz] = ¢ + (,%) =1z (%)
I(z) = el P@de _ o [(=2/z)dz _ o=21nlz| _ enlel ™ n(1/2%) — 1/x2. Multiplying the differential
equation () by I(x) gives %y’ - %y = % = <;12~y), = i = %y: Injz|+C =
y=z*(nlz|+C) =2’ In|z| + Cz?.

2 2 cos®
2

z = y+ - y = . I(z) = ol Pl@)de _ o[2/zde _ o2 Injz| _ eln(m2) — 2.

8. 2%y’ + 2zy = cos
Multiplying by I(z) gives us our original equation back. You may have noticed this immediately. since P(z) is
the derivative of the coefficient of y'. We rewrite it as (z®y)’ = cos® z. Thus,

1 1 C
2, _ 2 _r1 _1 1 _ :
2’y = [cos’zdr = [ 5(1+cos2z)dr = 32+ isin2z4+C = y= 5o +msm2z+§ or

= —1— + —1——sin:ccosa:+—o—
Y= 9z " 222 2’

9. Since P(z) is the derivative of the coefficient of v [P(z) = 1 and the coefficient is z], we can write the
. . . . . . . 2 3 2
differential equation zy’ +y = /Z in the easily integrable form (xy) =V = zYy=37T 2iC =
y=2z+C/z.
0.y —y=1/z [z #0l.soI(z) = el (-1d= — == Multiplying the differential equation by I(z) gives
ey eymee & () =e o = y=c* [ (7/x)do+C].
1" I(z) = el 22ds — e Multiplying the differential equation Y + 2zy = 2° by I(z) gives
2 z2 2 _a? z2 ! 2 _x?
ey +2ze® y=12"e = (e y) = z“e® . Thus
y = e U 2 dx + C] e [%me’z - %e"z dzr + C'] =1iz+ Ce® — e Ik %e“g dz.
12. I(z) = o —tanzdz _ glnlcoszl — cog gz (since —5 <z < F). Multiplying the differential equation by I(z) gives

. ! .
y’cosz—ytanzcos:c:mcoszsm2x = (ycoszx) = g cos T sin 2z. So

y= ! [/mcosa:sin2a:dm+()] = [/2mc032xsinmdm+C]
cosz |, cos T
1 —2zcosz 2 sin® —2zcos’x C 3 —sin’z
_ 2 (ginz— _ TsEees T 2tanz——
cos T [ 3 + 3 (smz 3 ) +C] 3 + cos T +atanz 9
13 (1+t)d—u+u:1+t t>0 [dividebyl+t] = é1—1'4——1—u:1(>v=),whichhastheform
’ dt ’ dt 1+t

u' + P(t)u = Q(t). The integrating factor is I(t)=el PO = e J/QHD]dE — (148 =1 ¢,
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Multiplying () by I(t) gives us our original equation back. We rewrite it as [(1 +t) u]’ = 1 + ¢. Thus,

t+ i+ C 2+ 2t +2C
_ 142 et 7Y _ L ratr b
(1+t)u—f(1+t)dt—t+2t +C = u 171 oru 2(t+1)

dr + dr 1 el [ dt/(tnt) In(In t) olvi i
. - = — +——r=—. I(t) =e: )= = In¢. Multiplying by In ¢ gives
WilntTr+r=te = Gt = [O=e¢ ¢ " Plymebymte
dr 1 : , . ‘ e+C
—_ — ot f— l = = .
Int 7 + " r=e = [Int)r]'=e" = (ntfr=e+C = r 7

5.y =z+y = y+(-Dy=z I@)=el-Dde _ -z Multiplying by e™* gives e %y’ — e %y = ze™®
= (%) =ze™® = e %y= Jze *dr = —ze™® —e "+ C [integration by parts with u = x,

dv=e""dz] = y=-z-1+Ce” y(0)=2 = -1+C=2 = C=3s0y=—z—1+3e”

d
16. td—z +2y =1t > 0,y(1) = 0. Divide by ¢ to get % + %y = ¢, which is linear.

I(t) = el @/t — 2t _ 42 Multiplying by t? gives tzz—?; +ay=t* = (%) =t! =

2 1. 2 C 1 21
Fy=3t"+C = y=7-+5 Ths0=y(l)=3:+C = C:—é,soy:———z.
5 t 5 5t
dv :
1. o "= 362 v (0) = 5. I(t) = e/ (=294 — ¢~ Multiply the differential equation by I() to get
d 2 \/
‘th—: —2te Py =32 = (e_t v) =3 = ety= [3Pdt=+C = v=13" +Cet’.

5=v(0)=0-14+C-1=C.sov = t3" + 5et".

1
2x

: 1 '
by\/igwes\/iy’+my=3\/5 = (Voy)' =3va = Vay=[3Vzdz=2%4C =

1822y +y=62. 2>0 = o' +—y=3. I(z) = e/ V(@) de _ ((1/2) Ina _ inal/? _ v/z. Multiplying

C C 24

=2z 4+ —. 4) =20 = - = = = =

y N y(4) 8+2 20 = C=2s0y 2x+\/5.
19. 2y’ =y +2?sinz = ¢ — 1 y=zsinz. I(z)=el("1/2)de _ g—lne _ na=! _ 1
z T

- 1.1 1 , 1y
Mulnplymgby;glves;y’—;y:smm = (;y) =sinz = ly:—cosac—i—C =
z

y=-zcosz+Cz. y(r)=0 = —7-(-1)+Cr=0 = C=-1s0y=—zcosz —z.

y _y y
20. 2 &Y _ _ r___ ¥ _ — = [1/[z(@+D)]dz _ _—(In|z|-Inz z+1
T TTr1 " T Ve S0l =e = emfnlelThlmi) - 22,
Multiplying the differential equation by I(z) gives z+1 y - y_zHl_z+1
z z(z+1) =z z
(x—f—l "z Th oz 1ol z
s V) = eny~x—+1/ +; de +C :x+1(m+lnm+C). But

z
r+1

0=y (1) =21 [1+C]s0oC = —1 and the solution to the initial-value problem is y = (zx —1+Inz).
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1 .
Y+ Zy=cosz (z#0).50 I(z) = el M/®de — ghnlel — g (for

z > 0). Multiplying the differential equation by I(x) gives

zy' +y=xzcosz = (xy) = zcosz. Thus,

1
y=— [/mcosmdx—FC} = % [zsinz + cosz + C]

cosz C

=sinz + + —
x

The solutions are asymptotic to the y-axis (except for C = —1). In fact, for C > -1,y — cc as x — 0%, whereas

for C < —1.y — —ooas z — 0. As z gets larger, the solutions approximate ¢ = sin x more closely. The

graphs for larger C lie above those for smaller C. The distance between the graphs lessens as x increases.

L I(z) = ef coszdz _ osin@ Myltiplying the differential equation by 10

\
I(z) gives e "y’ + cos z - "%y =cosz - e = /\\/\

(esinmy)' — COST - esin:t = =5 8
y=e """ [[cosz- e dr +C) =14 Ce” sin® The graphs for |

_J
C = —3.0. 1, and 3 are shown. As the values of C get further from .

zero the graph is stretched away from the line y = 1, which is the value

for C = 0. The graphs are all periodic in z, with a period of 2.

n n/(l n)
du =(1-n)y~ ndy r —= dy _ _y" du_uw du . Then the Bernoulli differential
d dr O dz  1—ndx 1-n dz

Setting u = y* ™", —
n/(l n) du

uation becomes ———
s 1-n dz

+ P(z)ut™ = Q(z)u™ ™™ or % + (1 = n)P(z)u = Q(z)(1 —n).

s 1
Here y' + % =—y? son=2Pz)= % and Q(x) = —1. Settingu = y~ 1, wsatisfies u’ — —u= 1. Then

~1/e)de _ 1 1 _ S

I(z) = el 71/ =E(f0rm>0)andu:m</5dm+c> = z(In|z| + C). Thus,y = Ol
Y3 4u 2

y + y—— Here n = 3. P(z )—— Qz) = ——andsettmgu—y 2w satisfies u’ - ==

2 2
Then I(x) — el (=4/2)dz — p=% and u = z* (/756-51.%—1—0) = g* (—5 +C> =Cz'+ —.

5z 5z
9\ "1/2
Thus.y::t(CmAJra) .

Here n = 3. P(z) = 1, Q(z) = z and setting u = y~2, u satisfies v’ — 2u = —2z. Then
I(z) = e/ 72z — =27 and 4 = [ [ —2ze " dz + C| = e (ze e+l +C)=z+ 1+ Ce*®

z1—1/2
Soyt=gz+i+Ce® = y=:k[z++Ce] .
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2]. (a) 2 —I— 10 =40 or %— + 51 = 20. Then the integrating factor is e/ 5% = ¢%. Multiplying the differential
dI
equation by the integrating factor gives esta +51e% = 20" = (1) =20e% =
I(t)=e " [[20e* dt+ C] =4+ Ce . But0=I(0) =4+ C,s0 I(t) =4 — e 5"
(b) I(0.1) =4 — 4™ "5 = 1.57T A
28. (a) % + 207 = 40sin 60t, so the integrating factor is e*°*. Multiplying the differential equation by the integrating

factor gives emt% +207e* = 40e*sin60t = (e*'1)’ = 40e* ! sin 60t =

. _ 8e—2
I(t) = e 20t [/ 40e** sin 60t dt + C (b) I1(0.1) = sin 6 3cgs6 + 8

2
S
~
[\]
>

I

e~?%* [40e*** (;&5) (205sin 60¢ — 60 cos 60t)] + Ce™2%

_ sin60t — 3 cos 60t
=—

But1=1(0) = -2 +C.s0 f/\ /\
I(t) = sin 60t — 3coz60t + 8~ . L \/ \//\\//\\//\}

-0.7

+ Ce—ZOt

295 —~ Q +20Q = 60 with Q(0) = 0 C. Then the integrating factor is e/ 4t — e*t, and multiplying the differential

equation by the integrating factor gives e* ZQ +4e"'Q = 12¢* = (e‘“Q)/ =12% =
Q(t) =e*[[ 12" dt + C] =3+ Ce™*. But 0 = Q(0) =3+ Cs0Q(t) = 3(1 — e~**) is the charge at time
tand I = dQ/dt = 12¢™* is the current at time ¢.

d
30. 2 d? + 100Q = 10sin 60t or Z—Q +50Q = 55sin 60t. Then the integrating factor is e/ 504 = 50 and

multiplying the differential equation by the integrating factor gives e % +50e°%Q = 5¢°% sin 60t =
(e*Q) = 5e sin60t =
Q(t) = e[ [ 5% sin 60t dt + Cl=e [SeE’Ot(Gloo)(SO sin 60¢ — 60 cos 60t)| + Ce ™5

= 155 (55in 60t — 6 cos 60t) + Ce™5%

_ —50t
1 and Q(t) — 5sin 60t — 6cos60t 3e

But0 =Q(0) = —:& + CsoC = is the charge at time ¢, while

122 61
: _ —50¢
the current is 1(£) = aQ _ 150 cos 60t + 180 sin 60t — 150e .
dt 61
apP [ kadt kt T
3N. — +kP=kM.soI(t) = e = e"". Multiplying the differential P

dt

: : Kt P kt kt
equation by I(¢) gives e ’r + kPe™ = kMe =
(e*P)' = kMert =
P(t) = e ([ kMe* dt + C) = M + Ce ™ k > 0. Furthermore, itis  P0)

0 —>

reasonable to assume that 0 < P(0) < M,so ~M < C <0. t
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32. Since P(0) = 0, we have P(t) = M(1 — e~ *"). If Py(t) is Jim’s learning curve, then P; (1) = 25 and

33

34.

Py(2) = 45. Hence, 25 = My (1 — e *) and 45 = My(1 — e™2*), 501 — 25/M; = e~ or

25 M, M; —25)\°
k=—-In{l—-— ) =In| ——— |. = _e 2%k = (=2
n( M1> n<M1_25> But45 = M1(1 —e™*%) s0 45 = M, [1 ( A ) or

50M; — 625 . .
45 = T Thus, M; = 125 is the maximum number of units per hour Jim is capable of processing.

Similarly, if P2(t) is Mark’s learning curve, then P>(1) = 35 and P,(2) =50. Sok = ln(M——Ah—%) and
y —

Mz — 35
50 = M- [1 — ( 2}\4 ) } or M»> = 61.25. Hence the maximum number of units per hour for Mark is
2

approximately 61. Another approach would be to use the midpoints of the intervals so that P; (0.5) = 25 and
P1(1.5) = 45. Doing so gives us M1 = 52.6 and M> ~ 51.8.

L min

rate of 3 L/min, but salt solution is added at a rate of 5 L/min, the tank, which starts out with 100 L of water,

y(t) kg
00+2 L . Salt therefore

k
y(0) = 0 kg. Salt is added at a rate of <O 4 g) (5 L) =2 mllgr; Since solution is drained from the tank at a

contains (100 4 2t) L of liquid after £ min. Thus, the salt concentration at time ¢ is —=———

y(t) ke

th t te of
leaves the tank at a rate 0 (100+2t L

) (3 ﬁ;) ﬁ()g—i_Z—t IElgn Combining the rates at which salt enters
3

dy 3y
and leaves the tank, we get — = 2 100 1 2t

d
5 — m Rewriting this equation as dy <

> y = 2, we see that

itis linear. I(t) = exp ( / ﬁ%) = exp(2 In(100 + 2t)) = (100 + 2t)3/ 2 Multiplying the differential

equation by I(t) gives (100 + 2t)3/2(;—‘z +3(100 + 2t)/%y = 2(100 + 2t)** =

[(100 + 2t)3/2y]' —2(100 +26)%% = (100 +20)%2y = 2(100+2t)* +C =

y = 2(100 + 2t) + C(100 + 26)~%/2. Now 0 = y(0) = 2(100) + C - 1007/ = 40 + 55C =

C = —40,000,s0 y = [% (100 + 2t) — 40,000(100 + 2t)_3/2] kg. From this solution (no pun intended). we

y(t) _[ 40,000 2}

100 + 2t 5

=75 E& In particular,
(100 +2t)°/* 5

L

calculate the salt concentration at time ¢ to be C(t) =

—40,000 2 kg a2
C(20) = T + 5 ~0:2275 T and y(20) = 2(140) — 40.000(140)~*/? ~ 31.85 kg.

Let y(t) denote the amount of chlorine in the tank at time ¢ (in seconds). y(0) = (0.05 g/L) (400 L) = 20 g. The

amount of liquid in the tank at time ¢ is (400 — 6t) L since 4 L of water enters the tank each second and 10 L of

liquid leaves the tank each second. Thus. the concentration of chlorine at time ¢ is 1 036( )6t i Chlorine doesn’t
yt) g L] _ 10y®) g_ 5Y(®) & rperefore.
enter the tank. but it leaves at a rate of [400 o L} [10 S| = 2006t s = 300 =3t s
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dy _ /dy /—_5‘1?_ = Iny=23In(200-3t)+C =
dt 200 3t 200 — 3t

c 5/3 — € . 900%/3 eC — 20
y = exp(3 In(200 — 3t) + C) = (200 — 3¢)*/3. Now 20 = y(0) = ° - = 200573 °

(200 — 3t)5/3

2005/3 =20(1 —0.015¢)*% gfor0 < t < 66% s, at which time the tank is empty.

y(t) =20

35. (a) % +Ey= gand I(t) = el(c/mdt — gle/m)t anq multiplying the differential equation by I(t) gives
m
(c/m)t
gle/mye Q. vee T
dt

v(t) = e~ (e/m)t [f gel/™t dt 4 K} =mg/c+ Ke~ (/™" But the object is dropped from rest, so v(0) =0

= gele/mt [e(c/m)tv}' = ge(®/™* Hence.

and K = —mg/c. Thus, the velocity at time ¢ is v(t) = (mg/c) [1 - e"(c/m)t].
(b) tlim v(t) = mg/c
() s(t) = [v(t)dt = (mg/c) [t + (m/c)e‘(c/m)t] + c1 where ¢1 = s(0) — m®g/c?. s(0) is the initial position,

s05(0) = 0 and s(t) = (mg/c) [t + (m/c)e_(c/m)t] - m?g/c?.

) dv mg _ ct g ct/m
_ _ ,—ct/m v _ s _ ct/m &b (71— t/ 1=
36. v = (mg/c)(1—e ) = - p <O e 2) + c( e )

_g_te—ct/m + g _ ge—ct/m — g <1 _ e—ct/m _ c_te—ct/m) =
m C C C m

. t 1
gﬂ_l_<1+gt>e_,,t/m:1_1+c/m:1_ -I;?Q
m [

. where Q = o > 0. Since e® > 1 + Q for all
gdm ect/m m

Q > 0, it follows that dv/dm > 0 for t > 0. In other words, for all ¢ > 0, v increases as m increases.

9.7 Predator-Prey Systems

1. (@) dz/dt = —0.05z + 0.0001zy. If y = 0, we have dz/dt = —0.05z, which indicates that in the absence of Yz
declines at a rate proportional to itself. So z represents the predator population and y represents the prey
population. The growth of the prey population, 0.1y (from dy/dt = 0.1y — 0.005zy), is restricted only by
encounters with predators (the term —0.005zy). The predator population increases only through the term
0.0001zy; that is, by encounters with the prey and not through additional food sources.

(b) dy/dt = —0.015y + 0.00008zy. If = 0, we have dy/dt = —0.015y, which indicates that in the absence of
z, y would decline at a rate proportional to itself. So y represents the predator population and z
represents the prey population. The growth of the prey population, 0.2z (from
dx/dt = 0.2z — 0.0002z2 — 0.006zy = 0.2z(1 — 0.001z) — 0.006zy), is restricted by a carrying capacity of
1000 [from the term 1 — 0.001z = 1 — x,/1000] and by encounters with predators (the term —0.006zy). The

predator population increases only through the term 0.00008zy; that is, by encounters with the prey and not

through additional food sources.
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2. (a) dz/dt = 0.12x — 0.000622 + 0.00001zy. dy/dt = 0.08y + 0.00004zy.

The zy terms represent encounters between the two species  and y. An increase in y makes dz /dt (the growth

rate of z) larger due to the positive term 0.00001zy. An increase in  makes dy/dt (the growth rate of y) larger

due to the positive term 0.00004zy. Hence, the system describes a cooperation model.

(b) dz/dt = 0.15z — 0.0002z> — 0.0006zy = 0.15z(1 — /750) — 0.0006zy.

dy/dt = 0.2y — 0.00008y? — 0.0002zy = 0.2y(1 — y/2500) — 0.0002zy.

The system shows that z and y have carrying capacities of 750 and 2500. An increase in z reduces the growth

rate of y due to the negative term —0.0002zy. An increase in y reduces the growth rate of = due to the negative

term —0.0006zy. Hence, the system describes a competition model.

3. (a) At ¢ = 0, there are about 300 rabbits and 100 foxes. At t = t;. the number of foxes reaches a minimum of about

20 while the number of rabbits is about 1000. At ¢ = t2, the number of rabbits reaches a maximum of about

2400. while the number of foxes rebounds to 100. Att = t3. the number of rabbits decreases to about 1000 and

the number of foxes reaches a maximum of about 315. As ¢ increases, the number of foxes decreases greatly to

100. and the number of rabbits decreases to 300 (the initial populations), and the cycle starts again.
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4. (a) Att = 0, there are about 600 rabbits and 160 foxes. At ¢ = t1, the number of rabbits reaches a minimum of

about 80 and the number of
while the number of rabbits rebounds to 1000. At

population has reached a maximum of about 1750. The curve ends at ¢t =

increased to 65 and the number of rabbits has decreased to about 950.

80T

a7

]
160 T

120 T

400

800

1200

R

(b)

R

20001t
1500 1

1000 1

500

foxes is also 80. Att = ta. the number of foxes reaches a minimum of about 25
t = ts, the number of foxes has increased to 40 and the rabbit

t4. where the number of foxes has

1150
1100

50

0
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(b) = =

(c) The solution curves (phase trajectories) are all closed curves

(d)

Soeither A=L =0or L = %; =200 and A =

0.5

0.0001
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=
0=-05L+ 0.000lAL} {

200 400 600 800 1000 1200 Species 1

(0.08 — 0.001W)RdW = (—0.02 + 0.00002R)W dR <

—_— —0.00l) dW = /(

_O._}(;.‘Z + 0.00002) dR

R0.0Qw0.0S
60’00002R60'001W

=C.

0=A(2-001L)
0 = L(~0.5 4+ 0.0001A)

5 Species 2 6. Species 2
’ 200+ t=2 7001
600+
1501 500+
4001
100+ 1=1 3004
sod 200+
1=0,5 1001
0 50 100 130 200 2% Species 1 0
7 dW  —0.02W + 0.00002RW
"dR ~ ~ 0.08R—0.00LRW
0.08 — 0.001W —0.02 + 0.00002R /<0.08
= dR
w aw R w
< 0.08 In|lW| - 0.001W = —0.02 In|R| + 0.00002R + K <«
0.08 InW +0.02 InR = 0.001W +0.00002R + K ¢ In(W°%R%2) — 0.00002R + 0.001W + K <
WO 08 R0-02 _ [0.00002R+0.001W+K .,  p0.02yj,0.08 _ (e0-00002R ,0.001W
. dy  —ry+bzy z"yk
— = ——< th — .
In general, if Iz % —azy en C hegay
0=2A-0.01AL
8. (a) Aand Lareconstant = A’ = 0and I/ = 0 =

= 5000. The trivial solution A = L = 0 just says

that if there aren’t any aphids or ladybugs, then the populations will not change. The non-trivial solution,

L
of aphids or the number of ladybugs.

dL/dt — —0.5L +0.0001AL
dA/dt ~ 24— 0.01AL

that have the equilibrium point (5000, 200)

Py

100 +
PI

5000 10,000 15000 A

Meanwhile, the ladybug population is increasing from P; to Ps
increasing number of ladybugs starts to deplete the aphid popul

inside them.

= 200 and A = 5000, indicates the population sizes needed so that there are no changes in either the number

L
400-- \\\\\\\\\\\\\\\\\\
300+ NN

NN

NN

2001 b

avs

22

100 ~~S=———Z-Z-=___-_------
0 5000 10,000 15000 A

At Py(1000, 200). dA/dt = 0 and dL/dt = —80 < 0. so the

number of ladybugs is decreasing and hence, we are

proceeding in a counterclockwise direction. At Py, there aren’t

enough aphids to support the ladybug population, so the

number of ladybugs decreases and the number of aphids begins

to increase. The ladybug population reaches a minimum at

P (5000, 100) while the aphid population increases in a

dramatic way, reaching its maximum at P>(14,250, 200).

(5000, 355). and as we pass through P;, the
ation. At Py the ladybugs reach a maximum
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population, and start to decrease due to the reduced aphid population. Both populations then decrease until Po.
where the cycle starts over again.

(e) Both graphs have the same period and the graph A L
of L peaks about a quarter of a cycle after the 15.000 T4
graph of A. 10,000 ™

k200

5000+ 1100

9. (a) Letting W = 0 gives us dR/dt = 0.08R(1 — 0.0002R). dR/dt =0 <« R =0o0r5000. Since dR/dt >0
for 0 < R < 5000, we would expect the rabbit population to increase to 5000 for these values of R. Since
dR/dt < 0 for R > 5000, we would expect the rabbit population to decrease to 5000 for these values of R.

Hence. in the absence of wolves, we would expect the rabbit population to stabilize at 5000.
(b) Rand W are constant => R'=0andW' =0 =

0 = 0.08R(1 — 0.0002R) — 0.00LRW 0 = R[0.08(1 — 0.0002R) — 0.001W]
=
0 = —0.02W + 0.00002RW 0 = W(—0.02 + 0.00002R)

The second equation is true if W = 0 or R = 52025 = 1000. If W = 0 in the first equation, then either R=0

or R = 0,_010_0_2 = 5000 [as in part (a)]. If R = 1000. then 0 = 1000[0.08(1 — 0.0002 - 1000) — 0.001W] &

0=80(1-02)-W & W=64

Case (i): W = 0, R = 0: both populations are zero

Case (ii): W = 0, R = 5000: see part (a)

Case (iii): R = 1000, W = 64: the predator/prey interaction balances and the populations are stable.

(c) The populations of wolves and rabbits fluctuate (d) R w
around 64 and 1000, respectively, and eventually 15001
stabilize at those values. 1000,
5001 Ly
0 t

10. () If L =0,dA/dt =2A(1 - 0.0001A4).s0dA/dt=0 < A=0or A= ﬁlﬁ)—l = 10,000. Since
dA/dt > 0 for 0 < A < 10,000, we expect the aphid population to increase to 10,000 for these values of A.
Since dA/dt < 0 for A > 10,000, we expect the aphid population to decrease to 10,000 for these values of A.

Hence. in the absence of ladybugs we expect the aphid population to stabilize at 10,000.

(b) A and L are constant = A’ =0and L'=0 =

0 = 2A(1 — 0.00014) — 0.01AL 0 = A[2(1 — 0.00014) — 0.01L]
=
0= —0.5L + 0.0001AL 0 = L(—0.5 + 0.0001A)
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The second equation is true if L = 0 or A = 522= = 5000. If L = 0 in the first equation, then either A = 0 or
A = 55 = 10.000. If A = 5000, then 0 = 5000[2(1 — 0.0001 - 5000) — 0.01L] <
0 =10,000(1 - 0.5) — 50L < 50L =5000 < L = 100. The equilibrium solutions are:

L=0A=0 (i)L=0,4=10,000 (iii) A = 5000, L = 100
dL _ dL/dt  —0.5L+0.0001AL
) 44 = dAJdr = TA(T—0.00014) — 0.0TAL
(d) (e)
L L (=0
20010y s72zooTTIIzIIIIg: LLE B SR A Atbubbbebieiieiiiaiae
| Rt 1Hns
E3 HIE Y EERR e 0|
R AL (Y gy R [ K
1 \ V A\ Y/ e s~ s T -~ -~ TV AV
\ \ - AN VNN
VR RENNRNN zIz VR SENANNNN
I S N
S NN S SOT333
0 20'00 40'00 60‘00 80'00 10,(30012.600 A 0 20'0() 40‘00 60I()0 8000 10,600]2.000 A

All of the phase trajectories spiral tightly around
the equilibrium solution (5000, 100).

f
® A [L
1200
6000 1
150
40001
100
20001 1so
0 t

Att = 0, the ladybug population decreases
rapidly and the aphid population decreases
slightly before beginning to increase. As the
aphid population continues to increase, the
ladybug population reaches a minimum at about
(5000, 75). The ladybug population starts to
increase and quickly stabilizes at 100, while the
aphid population stabilizes at 5000.

The graph of A peaks just after the graph of L has
a minimum.

9 Review

CONCEPT CHECK

1. (a) A differential equation is an equation that contains an unknown function and one or more of its derivatives.
(b) The order of a differential equation is the order of the highest derivative that occurs in the equation.
(¢) An initial condition is a condition of the form y(to) = yo.

2.y =2 +9* > 0forall z and Y. y' = 0 only at the origin, so there is a horizontal tangent at (0, 0), but nowhere
else. The graph of the solution is increasing on every interval.

3. See the paragraph preceding Example 1 in Section 9.2.
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4, See the paragraph after Figure 14 in Section 9.2.

5. A separable equation is a first-order differential equation in which the expression for dy /dx can be factored as a
function of z times a function of y, that is, dy/dz = g(z) f(y). We can solve the equation by integrating both sides
of the equation dy/ f(y) = g(x)dx and solving for y.

6. A first-order linear differential equation is a differential equation that can be put in the form % + P(z)y = Q(z),
where P and Q are continuous functions on a given interval. To solve such an equation, multiply it by the
integrating factor I(x) = e P(®)4% 1o put it in the form [I(z) y]’ = I(z) Q(z) and then integrate both sides to get
I(x)y = [I(z)Q(x)dz. that is, e [P@)dzy — [lP@)d2Q)(z)dx. Solving for y gives us
y=e [P® dzfefp(z)sz(l_) de.

1. (a) dy = ky; the relative growth rate, 1 @ is constant.

dt y dt

(b) The equation in part (a) is an appropriate model for population growth, assuming that there is enough room and
nutrition to support the growth.

(c) If y(0) = yo. then the solution is y(t) = yoe*t.

8. (a) dP/dt = kP(1 — P/K), where K is the carrying capacity.

(b) The equation in part (a) is an appropriate model for population growth, assuming that the population grows at a
rate proportional to the size of the population in the beginning, but eventually levels off and approaches its
carrying capacity because of limited resources.

9. (a) dF/dt = kF —aFS and dS/dt = —r5 + bFS.

(b) In the absence of sharks, an ample food supply would support exponential growth of the fish population, that is,

dF/dt = kF, where k is a positive constant. In the absence of fish, we assume that the shark population would
decline at a rate proportional to itself, that is, d.S /dt = —rS, where r is a positive constant.

TRUE-FALSE QUIZ

1. True. Sincey? > 0.3 = —1 — y* < 0 and the solutions are decreasing functions.
1 1-Inz
2. True. y:lx- = ¢ = R
T T

- Inz . .
1-Inz +x- nz _ (1-Inz)+Inz=1=RHS,soy = 22 is a solution
2 x T

LHS = 2%y + zy = z° -
of 2y +zy = 1.

3. False. z -+ y cannot be written in the form g(z) f(y).

8 True. y =3y—2z+6zy—1=6zy—2zx+3y—1 =2z(3y— 1)+ 18y — 1) = 2z + 13y — 1),s0y
can be written in the form g(z) f(y). and hence, is separable.

5 True. ey’ =y = y =e 7y = Y + (—e ™)y = 0, which is of the form y' + P(x)y = Q(z), so the
equation is linear.

6. False. o + zy = e¥ cannot be put in the form v + P(z)y = Q(x), so it is not linear.

7. True. By comparing % =2y (1 - %) with the logistic differential equation (9.5.1), we see that the carrying

capacity is 5; that is, tlim y =5.
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EXERCISES

1. (a) (b) tliglo y(t) appears to be finite for 0 < ¢ < 4. In

fact lim y(t) = 4 forc = 4, lim y(t) = 2 for
t—o00 t— oo

NS~~~
\Nssss

______________ 0<c<4,and Jim y(t) = 0 forc = 0. The

11171
1111

equilibrium solutions are y(¢) = 0, y(t) = 2, and
y(t) = 4.

S

2. (a) We sketch the direction field and four solution
curves, as shown. Note that the slope 3’ = z/yis
not defined on the line y = 0.

by =z/y & ydy=zde sy’ =z2+C.
For C = 0, this is the pair of lines y = +z. For

C # 0, it is the hyperbola 22 — v’ =—C.

3 (a) (b)h:O.l,xo:O,yozlandF(x,y)za:z—yz.
_ SOYn = yn—1+0.1(z2_, ~ Yn—1). Thus,
y1=1+0.1(0*-1%) = 0.9,
Y2 =09+40.1(0.1* - 0.9?) = 0.82,

Y3 = 0.82+0.1(0.2° - 0.822) = 0.75676. This

3x is close to our graphical estimate of ¥(0.3) ~ 0.8.

NP

/
!
1
I
!
I
1
1
1
1
s

V1 / /o=
III—‘
7

\

ek V2 ANV SN

P

A1

I nemmmamee
Vil

(c) The centers of the horizontal line segments of the

I

1

1

1

1

i

1

! direction field are located on the lines y = z and
/ .

/

Y = —x. When a solution curve crosses one of

|
_f,/l\\\\\qg-.‘\\\\\\[///—
==/ |\~~~ SSSN\ | /oo o
BTV A AN SN
PP YAk

oINS~ m———em
[P
(8]

w
—t

these lines, it has a local maximum or minimum,

We estimate that when z — 0.3,y =0.8, s0
y(0.3) =~ 0.8.

4 @ h=02,20=0yo=1and F(z,y) = 2zy>. We need ys.
Y1=1+402(2-0-1%) =1,9y =14 02(2-02-1%) =1.08 ~ (0.4).

®) h=0.1now.s0y, =1+0.1(2-0. ) =1y =1+01(2-0.1. 1?) = 1.02,
Ys = 1.02+0.1(2-0.2-1.022) ~ 1.06162, y; = 1.06162 +0.1(2-0.3-1.06162%) & 1.1292 ~ y(0.4).
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5.

dt

10.

1.

12.

(c) The equation is separable, so we write d_;;/ =2zdz / dy /2zd & 1 =z?+ C, but
y y "

y(0) = 1,50 C = —land y(z) =

1
T < y(04) = _——0_16 ~ 1.1905. From this we see that the
approximation was greatly improved by increasing the number of steps, but the approximations were still

far off.

y =ze” "% —ycosx = y' + (cosz)y = ze~ sin 4y This is a linear equation and the integrating factor is
I(z) = e/ = ¢ Multiplying (%) by €M% gives 6%y + e (cosz)y =T = (emTy) =z

= esinzy:%wZ_*_C = y:(%$2+c)e—sinw.

d dz

1+

" d
/lfz:f(l_t)dt = Injl+z|=t—3t°+C = |1+:I:]:et_t2/2+c N

T _ | ttr—te=101-t)+z(1-t)=1+z)(1-1t) =

=(1-t)dt =

2 2 .
1+z=+e/2. € = z=-1+Ke' /2 where K is any nonzero constant.

. (3y* +2y)y =zcosz = (3y2 +2y)dy = (zcosz)dz = f(3y +2y)dy = [(zcosz)dz =

v+ y? =cosz+xsinz + C. For the last step, use integration by parts or Formula 83 in the Table of Integrals.

2%y —y = 2r3e 1 = Y — ;15 y = 2xe~*/® (%). This is a linear equation and the integrating factor is

, 1 x
I(z) = eJ(=1/2)de _ o1/2 Multiplying (*) by e!/® gives ety — et/=. Y= 2 = (ef*y) =2z =

el/x ::172-|-C = y—-—e_l/m(a?—{—C).

Loy =lnz = ydy= %{ dz = /ydy = / 11; dz (Make the substitution u = Inx; then

du = dz/z.) So [ydy = [udu = 1y = +C’ =3y =1z’ +C y1)=2 =

122 = §(In 1)2+C=C & C=2 Therefore. 2y Lnz)® +20ry = v/( (Inz)2 + 4. The negative

square root is inadmissible, since y(1) > 0.

1 =2zyy = L AN dy=1+xdw = £—1n|w|+ +c1. Butz > 0,50
o= sy Y~ "oy Y 2 2~ 2 2

—lnz+z+ec & ylr)==xvetz+ Tnz. But —2 = y(1) so choose the negative square root and
—2 —\/c + 1 s0c = 3. Thus, the solution isy(z) = —Vv3+z+Inz
Since the equation is linear, let I(z) = el = ¢*. Then multiplying by I(z) gives €"y' +€"y = N
(e"y) =vz = yl@)=e *([Vzdz+c)=e (§x3/2 +c). But 3 = y(0) = c. so the solution to the

initial-value problem is y(z) =€~ (%m3/2 + 3),

) =ze” = [2ydy = [ze"dz =
y? = ze® — [e"dz (by parts) = (z —1)e” +C. We substitute the
initial condition: 12 = (0 - 1) +C = C=2 So the solution

isy=+/(x—1)e* +2. The negative square root is inadmissible
—4 _

due to the initial condition. 3
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13. The curves kz* 4+ y? = 1 form a family of ellipses for k£ > 0, a family of hyperbolas for k& < 0. and two parallel
2

1- . L .
lines y = 1 for k = 0. Solving kz? + y* = 1 for k gives k = Qy . Differentiating gives 2kz +2yy’ =0 <

2 ‘ z

y = ke (1-97) Z Y 1. Thus, for k 7 0 the orthogonal trajectories must satisfy y’ = 5 y ]
Y yz? oy Y-
2_q y? _z? ) )

= ¥ dy=—zdz = ?—ln|y[:—2-+K = y°—2Inly|+z* = C. For k = 0, the
orthogonal trajectories are given by z = C; for C; an arbitrary constant.

k . p 2kx 1+ 2?2 2wy

i iati i = = = 2zy———— = Thus, for
14. Differentiating both sides of y 152 gives y i x2)2 Y ir 12)2 T
1+ 22

1
k # 0 the orthogonal trajectories must satisfy 3/ = 22y = 2ydy = (; + .7:) dr =
2
y? = % + In|z| + C. For k = 0, the orthogonal trajectories are given by = C» for C» an arbitrary constant.
15. @) y(t) = y(0)e™ = 1000e** = y(2) = 1000e* = 9000 = €2 —9 = of — In9 =
k=3m9=In3 = y(t) =1000e13* = 1000 . 3¢
(b) ¥(3) = 1000 - 3% = 27,000
(©) ¥'(t) =1000- 3t - In3. so y'(3) = 27.0001n 3 ~ 29,663 bacteria per hour

(d)1000-3°=2-1000 = 3'=2 = ¢In3=In2 = t=(In2)/In3~0.63h

16. (a) If y(¢) is the mass remaining after ¢ years, then y(t) = y(0)e** = 18+, y(25) = 18¢25% — % 18 =
62519: % = 25k =—1n?2 = k____ln2 = y( )_186—(In2)t/25 18 .2~ /25

®)18-27Y® =2 = g-UB_1 —3tin2=-In9 = ¢=2519 ~ 79 yeurs
17. () C'(t) = —kC(t) = C(t) = C(0)e™** by Theorem 9.4.2. But C(0) = Co.s0 C(t) = Coe*
(b) C(30) = 1 Cj since the concentration is reduced by half. Thus, 1Cy = Che=3% = Inj =-30k =
k= —— ln 5= 30 In2. Since 10% of the original concentration remains if 90% is eliminated, we want the

value of ¢ such that C(t) = 5 Co. Therefore, £ Cy = Cpe=t2)/30 01 _ —t(In2)/30 =
t=—32%1n0.1~100h.

18. (a) Let ¢t = 0 correspond to 1990 so that P(t) = 5.28¢" is a starting point for the model. When ¢ = 10, P = 6.07.
$06.07=528¢"% = 10k=1n80 = - 16 In §3% ~ 0.01394. For the year 2020, £ — 30. and
P(30) = 5.28¢3%F ~ 8.02 billion.

In ==
b)) P=10 = 528 =10 = s =e" = kt=In s = t= 101% ~ 45.8 years; that is,
5.28
in 1990 + 45 = 2035.
K 100 100 — 5.28 6.07
P)= —— = — " here g = 200-5.28 -1
(c) P(t) = T Ac—we 1+Ae_kt,whexeA 58 17.94. Using k = 10 ln528 from part (a), a

100

model is P(t) ~ 1+ 179400013947 and P(30) ~ 7.81 billion, slightly lower than our estimate of

8.02 billion in part (a).
(dP=10 = 1+ Ae ™™ =100 o gkt _g e M =9/A = _pt= In(9/4) =

1. 9
t= % In a ~ 49.47 years (that is, in 2039), which is later than the prediction of 2035 in part (b).
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dL dL dL
19. (@) — X Loo — & _ _
@ xLew—L = k(Lo — L) = /Lw_L—/kdt = —In|Le—L|=kt+C =
|Leo —L| =kt —C = |Loo—L| =€ = Loo — L=Ae* = L=Lo— Ae ™.
Att=0L=L00)=Lec—A = A=Lo—L(0) = L(t) = Loo — [Loo — L(0)] ™.

() Loo =53 cm, L(0) =10cm,and k =0.2 = L(t) = 53 — (53 — 10)e™02t = 53 — 43e-0-2t

20. Denote the amount of salt in the tank (in kg) by y. y(0) = 0 since initially there is only water in the tank. The rate

at which y increases is equal to the rate at which salt flows into the tank minus the rate at which it flows out. That

. dy kg L y kg L y kg d 1
rateis =2 = 0.1-2 x 10— — =——= X 10— =1 - = —— Yy — | =
dt L " 10L > Vmin - ' 10min /10—y /10 dt =

~In|10 —y| = 15t+C = 10-y= Ae~t/10 y(0)=0 = 10=A = y=10(1- e~ 19).
Att = 6 minutes, y = 10(1 - e-"’/“’) ~ 4512 kg.
21. Let P be the population and I be the number of infected people. The rate of spread dI/dt is jointly proportional to

I P
Tandto P — I.so fi tantk.dI/dt =kI(P-I) = I=
so for some constan / ( ) 7 (P lo)e P (from the

discussion of logistic growth in Section 9.5).
Now, measuring ¢ in days, we substitute t = 7, P = 5000. I = 160 and I(7) = 1200 to find k:

160 - 5000
160 + (5000 — 160)e—5000-7"k

160 - 5000
160 + (5000 — 160)¢—0-00006448-5000-¢

1200 = &k~ 0.00006448. So, putting I = 5000 X 80% = 4000, we solve

& 160 + 4840703224 =200 &

for t: 4000 =

~0.3224t = In 2% <t~ 14.9. So it takes about 15 days for 80% of the population to be infected.

p LR _kdS o d iy g o mR=knS+C =

"Rdt St dt dt

k . .
R=emS+C = (%) = R= AS*. where A = €€ is a positive constant.

dh R h k+h R k R
er_ 2 — - ——dh= —— 1+=)dh=—-= [ 1dt
no B(L) s [ [(-5)a = [(+5) =7 -

h+klnh=— ‘E/t + C'. This equation gives a relationship between h and ¢, but it is not possible to isolate h and

express it in terms of ¢.

2. de/dt = 0.4z — 0.002zy. dy/dt = —0.2y + 0.000008zy

(a) The zy terms represent encounters between the birds and the insects. Since the y-population increases from
these terms and the z-population decreases, we expect y to represent the birds and z the insects.

(b) z and y are constant = 2 =0andy =0 =
0 = 0.4z — 0.002zy 0 = 0.4z(1 — 0.005y)
{0 — 02y + 0.00000Smy} {0 — —0.2y(1 — 0.00004z)
1 _ 900 and z = ~—L— = 25,000. The non-trivial solution represents the population sizes needed

Oory = 5oo0s 0.00004
so that there are no changes in either the number of birds or the number of insects.

y = 0and z = 0 (zero populations)




) dy _ dy/di 0.2y +0.000008zy
C) — = =
( dr  dz/dt 0.4z — 0.002zy
(d) yL
400T | / /S = — — ~~ NN N\
I/ LTSN N N NN
I 1 = — — <X N NN\
L 17 = — — ~ NN\
300T /- — ~~N NN\ W\
| / - — ~ N N\ A\ \
I / /=~ N\ A\ \
I I/ — N v \
2007 NN — T |
i \N———~ s/ /
\ N~S— = — ~ -~ ~ -~
v\~ ——= -~
00T SN ==~ ~
N~ - - — — - - =
0 20000 40000 60,000 X
(e) x A (insects) (birds) 4 y
60,0001 L 400
birds

40,000+

20,000 1,

T 300
1200

100
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At (z,y) = (40,000, 100), dz/dt = 8000 > 0, so as
t increases we are proceeding in a counterclockwise
direction. The populations increase to approximately
(59.646,200), at which point the insect population

starts to decrease. The birds attain a maximum
population of about 380 when the insect population

is 25,000. The populations decrease to about
(7370,200), at which point the insect population starts
to increase. The birds attain a minimum population of
about 88 when the insect population is 25,000. and
then the cycle repeats.

Both graphs have the same period and the bird
population peaks about a quarter-cycle after the
insect population.

2. (a) dz/dt = 0.42(1 — 0.000005z) — 0.002zy, dy/dt = —0.2y + 0.000008zy. If y = 0, then

dz/dt = 0.4z(1 — 0.000005z), so dx/dt

=0 & z=0orz= 200,000, which shows that the insect

population increases logistically with a carrying capacity of 200,000. Since dz/dt > 0for 0 < 2 < 200,000
and dz/dt < 0 for z > 200,000, we expect the insect population to stabilize at 200,000.

(b) z and y are constant = 2’ = 0 and yYy=0 =

0 = 0.4z(1 — 0.000005z) — 0.002zy
0 = —0.2y + 0.000008zy

The second equation is true if y = 0 or z =

Case (i): y = 0, z = 0: Zero populations

Case (ii): y = 0,

{

0 = 0.4z(1 - 0.000005z) — 0.005y]
0 = y(—0.2 + 0.000008z)

wg—o%% = 25,000. If y = 0 in the first equation, then either z — 0
Or & = fm5m5. = 200.000. If 2 = 25,000, then 0 = 0.4(25.000)[(1 —
0= 10,000[(1 —0.125) — 0.005y] =

0.000005 - 25,000) — 0.005y] =

0=8750 -50y = ¢ =175

Z = 200,000: In the absence of birds, the insect population is always 200,000.

Case (iii): © = 25,000, y = 175: The predator/prey interaction balances and the populations are stable.

(c) The populations of the birds and insects fluctuate
around 175 and 25,000, respectively, and

eventually stabilize at those values.

(d)

x 4 (insects)
45.000

35,000 +
25.0004

insects

15,000+
5,000+
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26. First note that, in this question, “weighs” is used in the informal sense, so what we really require is Barbara’s mass
m in kg as a function of ¢. Barbara’s net intake of calories per day at time ¢ (measured in days) is
c(t) = 1600 — 850 — 15m(t) = 750 — 15m(t), where m(t) is her mass at time . We are given that m(0) = 60 kg

andd—nl: c(t) ’Sod_nz: 750 — 15m _ 150 —3m _ —3(m — 50)

with m(0) = 60. From

dt 10.000 dt 10,000 2000 2000
—=5= | 2000° we get In |m — 50| = — 525t + C. Since m(0) = 60, C = In 10. Now
m — 50 3t
In | S | 500" Im — 50| = 10e~*/2°°°. The quantity m — 50 is continuous. initially positive, and the

right-hand side is never zero. Thus, m — 50 is positive for all ¢, and m(t) = 50 + 10e~3t/2090 kg Ast — oo,

m(t) — 50 kg. Thus, Barbara’s mass gradually settles down to 50 kg.

d2

dy\* . d
21. (a)a—x%:k 1+<£—)‘Settmgz:d—z,weget—j—;:k 1+22 = —Td\/_%:kdm.Using
z

Formula 25 gives ln(z + V14 22) —kzx+tc => z+V1+22= Cek® (where C =€) =
V1422 = Ceb — 2 = 1+2°= C?e?k® _ 902+ 22 = 20ek®z = 0% -1 =

z= %e’“ — %e"”. Now % = %ekm - 2—156_’“” = y= —26—];6’” + %Ee_kr + C'. From the
diagram in the text, we see that y(0) = a and y(£b) = h. a=1y(0) = % -+ —Zﬁ +C =

C'=a- 261; %E = y= % (e —1) +2_é’_k (e7"* — 1) + a. From h = y(£b). we find

h= % (e —1) + Eé’_k (e* —1) +aand h = —QC—I; (e*—1) + -2—%’; (e¥* — 1) + a. Subtracting the
second equation from the first, we get 0 = %e—kb——?e_—kli - &éb—_zi—ﬁ = % (C - —é,—) sinh kb.

Nowk>0andb>0,sosinhkb>0andC=:i:l. If C = 1. then

1 ke 1, ks 1ef* e 1 1

== - — - _le *te ~ ia=a+ ~(coshkz—1).1fC=-L

Y 2k(e 1)+2k(e 1)+a X 5 Lt a+k(cos kr—1).1fC=-1
1 ks 1, ks R | _ 1

theny:—%(e —1)—%(6 —1)+a=—k———2—-—-+E+a—a—z(coshkw—l).

1
Since k > 0, cosh kz > 1, and y > a, we conclude thatC =landy =a+ E(cosh kx — 1), where
h=y(b)=a+ %(cosh kb — 1). Since cosh(kb) = cosh(—kb), there is no further information to extract from
. 1
the condition that y(b) = y(—b). However, we could replace a with the expression h — % (cosh kb — 1),

obtainingy = h + %(cosh kz — cosh kb). It would be better still to keep a in the expression for ¥, and use the

expression for h to solve for k in terms of a, b, and h. That would enable us to express y in terms of & and the
given parameters a. b. and h. Sadly. it is not possible to solve for k in closed form. That would have to be done

by numerical methods when specitic parameter values are given.

(b) The length of the cable is
L= b1+ (dy/de)*do = |2, V1+ sinb? ko da = [°, cosh kz da =2 [ coshka dz

—2[(1/k)sinb km]z _ (2/k)sinh kb
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1. We use the Fundamental Theorem of Calculus to differentiate the given equation:
2
F@F =100+ F{IFOF +1F@F }dt = 2/@)f (@) = [f@F + [F @ =
(@) + [f' ()] - 2f(zx)f'(z) =0 = [f(z)-Ff(@)’=0 & f(z) = f'(z). We can solve this as a
separable equation, or else use Theorem 9.4.2 with k = 1. which says that the solutions are f(z) = Ce®. Now

[£(0)]* = 100, s0 £(0) = C = +10, and hence f(z) = £10e” are the only functions satisfying the given

equation.

2. (fg)' = f'q’, where f(z) = & = (eIQg), = 2xe’2g’. Since the student’s mistake did not affect the answer,

/
2 \/ 22 22 22 g _ 2z 1
(e’”g) =e" g’ +2ze” g = 2ze g'.So(2:zc—])g':2acg,or—g—23:*1‘14—2%_1

Injg(z)| =z+ilm@2z-1)+C = 9(z) = Ae® 2z — 1.

3 f(z) = Jim 15 h})z —1@) _ y, L@ }(Lh) U fsince flz + h) = f@)f(n)]

h—0

= (@) Jim L1 — g i LOL=1O) _ ) ) _ 1)

h—0 h—0 h—0
Therefore, f'(z) = f(x) for all z and from Theorem 9.4.2 we get f(z) = Ae®. Now f(0) =1 = A=1 =

f(z) = €.

dz ) _ bz _ -1 LS (CoN er differentiati
w([rom) ([ 7)== J@) "~ Jf@de ™ @) " [ fa)ag)? Rer diflerentating] =

[ f(z)dz = £f(z) [after taking square roots] = f(z) = +f’ (z) [after differentiating again] =
y = Ae” ory = Ae™" by Theorem 9.4.2. Therefore, f(z) = Ae® or f(z) = Ae™, for all nonzero constants A,

are the functions satisfying the original equation.

5. Let y(t) denote the temperature of the peach pie ¢ minutes after 5:00 p.M. and R the temperature of the room.

Newton’s Law of Cooling gives us dy/dt = k(y — R). Solving for y we get dyR =kdt =
y —_—

lnly—R|=kt+C = |y—R|=ekt+C y-R==xe".e° = y= Mek + R where Misa

nonzero constant. We are given temperatures at three times.

y(0) =100 = 100=M+R = R=100-M
y(10) = 80 = 80=Me* +R (1
¥(20) = 65 = 65=M%* LR (2

Substituting 100 — M for Rin (1) and (2) gives us
—20=Me'"* — M (3) and —35= Ae20k _ 5y @)

m
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) —20 M(ef%* —1 4 el% _1
Dividing (3) by (4) gives us T = —J\_/I%)ZTI;- = = = R = 4e20F _ 4 =7e% 7 =
4¢2%% _ 7¢1% | 3 — . This is a quadratic equation in e'%%. (4e°* —3) (e*-1)=0 = e’ =2or1

= 10k=In % orlnl = k= 1—10 1n% since k is a nonzero constant of proportionality. Substituting % for 0%

in(3) givesus —20=M -2 - M = -20=-1M = M =80.NowR=100-MsoR=20°C.

- Let b be the number of hours before noon that it began to snow, ¢ the time measured in hours after noon, and

z = z(t) = distance traveled by the plow at time 2. Then dx/dt = speed of plow. Since the snow falls steadily, the
height at time ¢ is h(t) = k(t + b), where k is a constant. We are given that the rate of removal is constant, say R
(in m®/h). If the width of the path is w, then R = height X width x speed = h(t) x w x %% = k(t+bw %

dt
t+b

Thus, Z—j = Z% where C = ki%u_) is a constant. This is a separable equation. /d:c =C

z(t) = Cln(t +b) + K.

Putt=0:0=Clnb+ K = K=-Clnbsoz(t)=Cln(t+b) — Clnb=Cln(1 +1t/b).
Putt = 1: 6000 = Cln(1+1/b) [z = 6 kml].

Putt = 2: 9000 = CIn(1 +2/b) [z = (6+3) km].

1 2 1\* 22
Solve for b: In(1+1/8) _ @ +2/b) 31n(1+5>:2ln<1+3) = <1+5> :<1+E>

6000 9000

3 3 1 4 4 1 1 1 ) i B

A R R 1.1 20 o5 B+b-1=0 = b==5%
= 43 tptE-ltyte = REERalE + L

Butb > 0,50b = :%i's_ ~ 0.618 h ~ 37 min. The snow began to fall ﬁ;—l hours before noon; that is, at

about 11:23 A.M.

. (2) While running from (L, 0) to (z, y). the dog travels a distance

L T
s = / 1+ (dy/dz)*dz = — / 1+ (dy/dx)? dz, so % = —\/1 + (dy/dz)?2. The dog and rabbit
T L
run at the same speed, so the rabbit’s position when the dog has traveled a distance s is (0, s). Since the dog runs

. d —
straight for the rabbit, w_s-9 (see the figure).
dr 00—z

"w Slope of tangent line
s=y
0—x

y
* (Lo ~*
dy ds _ dy @ d_y = - @ Equating the two expressions for (—ii
Thus.s:y—ma = T = do mdm2+1dm =T quating the p e

2 du\ 2
gives us T %ﬁé =4/1+ (:%) . as claimed.



CHAPTER9 PROBLEMSPLUS O 779

. d dz dz .
(b) Letting z = Z—z we obtain the differential equation d_:: =vV1+2z2 or \/_lﬁ =< Integrating:

dz 25
lnx:/——:ln(z—i- 1+z2)+C. Whenz =L,z =dy/dr =0.solnL =In1+C.
V1422

Therefore, C =InL,solnz = ln(\/l + 22 + z) +InL = ln[L(\/l + 22 4+ z)] =

=L(VIt2+2) = 1+22:%-z = 1+z2:(%)2—2—zz+ =
(%)2~2z<%>—1=0 = zz(xz/é);lglzzzzfz:%—g— [for z > 0]. Smcez—j—z.
yzg—glnx+Cl.Sincey:OWhenz:L.O:§—§IHL+C’1 = C1= LlnL £Thus

(c) Asz — 0, Yy — 00, so the dog never catches the rabbit.

8. (a) If the dog runs twice as fast as the rabbit. then the rabbit’s position when the dog has traveled a distance s is

(0, 5/2). Since the dog runs straight toward the rabbit, the tangent line to the dog’s path has slope

2
5—562_ Thuss—2y~2mdy = Q: @—<2 M+2dy> _op dY

From Problem 7(a) — = 1 + ,80 21 _y dy
dx? d:v

d
Letting z = ﬁ we obtain the differential equation 23: % =+vV1+220 % = i—x

2dz

: _ — 2
Integrating, we get Inz = N 2 ln( 14224+ z) + C. [See Problem 7(b).]

Whenz = L, 2 = dy/dx = 0,s0InL = 2In1+C = C. Thus,

lnx=21n(\/1+z2+z)+lnL \/1+22+z)2) = :sz(\/l-|~.zz-|—z)2 =

V1422 = 1/ -z = 1422 —%—2‘/%z+z2 = 2‘/%z=%—1 =

dy 1 [z 1 1 4 VI, 1,
—_— == - = ——0 — 2 = — /2 _ 1/2
e VI 3 AN 5 L y 3\/Zz VL z? + C;. When

1 L
z=Ly=0s00= L3% _ /T [\/? == _ =C; — 2 =2
y i VL +C 3 L+C=C 5 L. Therefore, C; $L and

T
v=3 A La'? 1 2L Asz — 0,y — %L. so the dog catches the rabbit when the rabbit is at (0,2L).

(At that point, the dog has traveled a distance of %L. twice as far as the rabbit has run.)

(b) As in the solutions to part (a) and Problem 7. we getz = @ = w—z - L—2 and hence y = m_?’ + L—2 -2r
dr  2L2 922 6L2 2 37
We want to minimize the distance D from the dog at (z,y) to the rabbit at (0, 2s). Now s = 1y — 1z 331 =

T
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z? L? > B z3 L?

2s=y—c2 = — 28 = = - = _
Y Y . ’”<2L2 222

-2'[7 %.SO

D=\/(m—0)2+(y—23)2=\/m2+<§2——§—:)2

6 2 4 3 2\ 2 3 2
T T L L
YIS S A (. e I

4L 2 4z 202 2z 212 2z
2 L2 3:1:2 L2 L4

3z I
D=0 & ——-—-—== o _ = 4_ L _

oL2  2x2 0 & 52 = 27 & ot =3 =3 m———%,z>0.L>0.
. 3 L?
S‘“CCD”(i’?):——ﬁ—i———>0f0rallm>0,weknowthat

L 3

is the minimum value of D, that is, the closest the dog

3
_q-—1/4
NEAW (L 8 ) P S 17
3 212 2(L-3-1/4)  33/4

gets to the rabbit. The positions at this distance are

. (L 5 2 (L 5V3-6
o = (5 (7 3)7) = (%5 Y)
8V3L 2L\ _ (, 8V3-6
9 3) 7 9
9. (a) We are given that V = Lxr?h, dV/dt = 60000 ft’/h, and r = 1.5h = 2h.SoV = in(3h)*h = §nh’

% _ dh dh Therefore. dh _ 4(dV/dt) _ 240,000 _ 80.000

dro3n® gy =3 g dt _  Onhz  9mhz  3h?
[3h*dh = [80.000dt = h®=280,000t+C. Whent = 0, h = 60. Thus, C = 60° = 216,000, so
13 — 80.000¢ -+ 216,000. Let h = 100. Then 100> = 1.000.000 = 80,000 + 216,000 =
80.000t = 784,000 = t=9.8,s0 thetime required is 9.8 hours.

(b) The floor area of the silo is F' = - 2002 = 40,0007 ft2. and the area of the base of the pile is
A=nr?= w(%h)2 = 22h?. So the area of the floor which is not covered when h = 60 is
F — A = 40.000m — 81007 = 31.9007 = 100.217 f2. Now A = &h* = dA/dt= 9 . 2h (dh/dt).

and from (x) in part (a) we know that when h = 60, dh/dt = %?é—%‘;—g = 209 f/h. Therefore.

dA/dt = 25(2)(60) (%) = 2000w ~ 6283 ft® /h.
(c) Ath = 90 ft. av/dt = 60,000m — 20,0007 = 40,0007 ft3/h. From (%) in part (a),

dh  A(dV/dt) _ 4(40.000r) _ 160.000 ) 3
_— = = = —— = t = 5 .
= onh? o e = Jondh [160,000d¢ = 3h° =160.000t +C

When ¢ = 0. h = 90; therefore, C = 3 - 729.000 = 2.187.000. So 3h® = 160,000t + 2,187.000. At the top,

h=100 = 3(100)® =160.000¢ +2,187.000 = &= 813.000 ~; 5.1. The pile reaches the top after
about 5.1 h.
10. Let P(a, b) be any first-quadrant point on the curve y = f(x). The tangent line at P has equation
y — b= f'(a)(z — a), or equivalently, y = mz + b — ma, where m = f'(a). If Q(0, ) is the y-intercept, then

-b b . N
¢ = b — am. If R(k,0) is the z-intercept, then k= amm =a-—. Since the tangent line is bisected at P, we

Rabbit: (0,2s) = (0,

x) =

know that |PQ| = |PRY; that s,
@=02+ - (-am)? = Vla—(@a—b/m)*+ (-0
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Squaring and simplifying gives us a2 + a?m? = ¥/m? +b6° = a’m®+a®mt = b2 +0*m? =

a?m* 4+ (a® - b)m? -2 =0 = (@®m® —b*)(m*+1) =0 = m?=b%/a>. Since m is the slope of

the line from a positive y-intercept to a positive z-intercept., m must be negative. Since a and b are positive, we have
dy y dy dzx

= - s i e equivalent differential equation -2 = —2 = 2¢ — _
m b/a., so we will solve the eq q Iz . ” .

/@:-/d_x = lny:—ln:c-i—C’ [m,y>0] = y:e—lnm+C:elnz‘1.eC:m—l_A =
y z
y = A/x. Since the point (3, 2) is on the curve,3=A/2 = A =6andthecurveisy = 6/z withz > 0.

- Let P(a,b) be any point on the curve. If m is the slope of the tangent line at P, then m = y/(a), and

1 1 a
i i isy—b=——(z — ivalently, y = —— b+ —.
an equation of the normal line at Pis y — b - (z — a), or equivalently, y m:c +b+ -
. . a a . __a
The y-intercept is always 6, so b + o 6 = o= 6-b = m r—
. . . . . dy T
We will solve the equivalent differential equation Pt 6—_y = (6-y)dy=2dz =

/(6—y)dy:/:cda: = 6y-3°=121C = 12y — 4 = 2® + K. Since (3, 2) is on the curve,

12(2) =22 =32+ K = K = 11. So the curve is givenby 12y — 2 = 22 + 11 =
2 +y? —12y+36=-11+36 = 22 + (y — 6)% = 25, a circle with center (0,6) and radius 5.

. Suppose C is a curve with the required property and let P = (x0,yo) be a point on C. The equation of the normal

. . 1 . d . . .
linetoCat Pisy —yo = —y—, (z — o), where g} is the value of d—i/ atz = xo. This equation makes sense only if
0

Yo # 0. If yo = 0, then the normal line at P is = @o. which does not intersect the y-axis at all unless zo = 0.
So let’s assume that y # 0. Then the normal line to C at P intersects the z-axis at (zo + yoy), 0), and it
intersects the y-axis at (0,50 + zo/y5). The condition on C implies that

[distance from P (o, yg) to (0,90 + z0/y0)] = [distance from (0,90 + 0 /y5) to (2o + oy, 0)]

V(0 —20)” + (yo + 70/3% — yo)? = Vo +vou - 07+ 10— (o + 20/yp)]*

Squaring both sides, we get 22 + x5/ (y6)? = (zo + yoyp)* + (yo + zo0/y5)? or

2 2 )

x
25+ /02 = 2% + 2zoyoyl + Y6 (v0)® + y3 + 2230_;140 + 1:02. Subtracting z2 + —20
(%) Y (vo) (%)

multiplying by yp, we get

5 from both sides and

0= w03 + 95 (46)° + 22000 [1+ (46)°] = v0 {wow$ + yo (44)° + 200 1+ (w)*]}
= yo{yoyé [1 + (yé)z} + 2z [1 + (yé)zJ} = yo (Yoo + 2x0) [1 + (y6)2J

Since 1+ (y§)® > 1> 0. we conclude that yo (yoyy + 220) = 0. Now P is an arbitrary point on C for which

Yo # 0. Thus, we have shown that Y(yy' + 2z) = 0 for points (z,y) along C where ¢/ # 0. One solution of this
equation is y = 0, but that curve (the z-axis) doesn’t satisfy the condition required of C. since its normal lines at
points for z # 0 don’t intersect the y-axis. Thus, we can focus our attention on points of C' where y # 0, and
conclude that yy' + 22 = 0 at points of C' where y # 0and y' # 0. Integrating both sides of yy' + 2z =0, we get
W= Clearly ¢ > 0 (since y # 0), so we can write ¢ — a®. where a = \/z > 0. Thus, 2y° + 22 = a2 and
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2?/a® + y? /(v/2a)? = 1. This shows that C is (part of) the ellipse y

centered at (0, 0) with semimajor axis V2 a in the y-direction and

sermniminor axis a in the z-direction. The points of C where y = 0 or

y' = 0 are the vertices (0,=£v/2a) and (£a, 0). At these points, the (~a,0)

=

condition on C is satisfied in a degenerate way. [When P = (&£a,0), the
normal line at P is the z-axis, so all the points of the normal line can be

viewed as points of intersection with the z-axis. The intersection with the

y-axis at (0, 0) is midway between (a, 0) and (—a, 0); one of these points
is P. and the other can be regarded as an intersection of the normal line
with the z-axis. Similarly, when P = (0, +v/2 a). the normal line is the

y-axis, and the point (0, +v2a / 2), which can be regarded as an intersection of the normal line with the y-axis. is
midway between P and (0,0), the intersection with the z-axis.]

2 2
Conversely, if C is part of the ellipse % + 5%—2 — 1 for some a > 0, then the normal line at a point (o, yo) of
C (other than the four vertices) has equation y — yo = %JO— (@ — mo). Its intersections with the coordinate axes are
zo
Yo\1? Y3
(0, %0) and (—zo,0). [distance from (zo,Yo) to (0, E)] = x5+ TO and

2 2
{distance from (07 1_/22> to (—xo, 0)] =5+ yzo’ so the required condition is met at points other than the four

vertices. As we have explained, if we are willing to interpret the condition broadly, then it can be viewed as holding
even at the four vertices.

Another method: Let P(xo, yo) be a point on the curve. Since the midpoint of the line segment determined by the
normal line from (zo, o) to its intersection with the z-axis has z-coordinate 0, the z-coordinate of the point of

-0 _ 0 Sothe tangent

intersection with the z-axis must be —zo. Hence, the normal line has slope ——————= =
zo — (—%0) 2o

. 2z
line has slope ——@. This gives the differential equation y = ——y— = ydy=—2rdz =
Yo

[ydy=[(-20)dz = 3y*=-2"+C = 22+ 1y?=C (C>0).





